779 research outputs found

    Combined treatment of a solid tumour by local hyperthermia and actionomycin D.

    Get PDF
    (BALB/c X C57BL/6)F1 mice bearing an SV-40 fibrosarcoma in the limb were injected with 0.045, 0.09 and 0.18 microgram/g body wt actinomycin D into the tumour. Similar animals were also treated with local hyperthermia (39.7 degrees, 42.3 degrees and 43.6 degrees C intratumour temperature for 30 min). The marked increase in median survival time following the combination of drug and local hyperthermia indicates that the combined treatment has a synergistic effect in the control of solid tumours. The median survival time of animals receiving the two treatments in immediate succession was higher than in animals with 30 min between treatments. This has important implications for the therapy of human cancer

    From: John Willis

    Get PDF

    Asymmetric protonation of EmrE

    Get PDF
    The small multidrug resistance transporter EmrE is a homodimer that uses energy provided by the proton motive force to drive the efflux of drug substrates. The pKa values of its “active-site” residues—glutamate 14 (Glu14) from each subunit—must be poised around physiological pH values to efficiently couple proton import to drug export in vivo. To assess the protonation of EmrE, pH titrations were conducted with (1)H-(15)N TROSY-HSQC nuclear magnetic resonance (NMR) spectra. Analysis of these spectra indicates that the Glu14 residues have asymmetric pKa values of 7.0 ± 0.1 and 8.2 ± 0.3 at 45°C and 6.8 ± 0.1 and 8.5 ± 0.2 at 25°C. These pKa values are substantially increased compared with typical pKa values for solvent-exposed glutamates but are within the range of published Glu14 pKa values inferred from the pH dependence of substrate binding and transport assays. The active-site mutant, E14D-EmrE, has pKa values below the physiological pH range, consistent with its impaired transport activity. The NMR spectra demonstrate that the protonation states of the active-site Glu14 residues determine both the global structure and the rate of conformational exchange between inward- and outward-facing EmrE. Thus, the pKa values of the asymmetric active-site Glu14 residues are key for proper coupling of proton import to multidrug efflux. However, the results raise new questions regarding the coupling mechanism because they show that EmrE exists in a mixture of protonation states near neutral pH and can interconvert between inward- and outward-facing forms in multiple different protonation states

    Wafer-Scale Assembly of Semiconductor Nanowire Arrays by Contact Printing

    Full text link
    Controlled and uniform assembly of "bottom-up" nanowire (NW) materials with high scalability has been one of the significant bottleneck challenges facing the potential integration of nanowires for both nano and macro electronic circuit applications. Many efforts have focused on tackling this challenge, and while significant progress has been made, still most presented approaches lack either the desired controllability in the positioning of nanowires or the needed uniformity over large scales. Here, we demonstrate wafer-scale assembly of highly ordered, dense, and regular arrays of NWs with high uniformity and reproducibility through a simple contact printing process. We demonstrate contact printing as a versatile strategy for direct transfer and controlled positioning of various NW materials into complex structural configurations on substrates. The assembled NW pitch is shown to be readily modulated through the surface chemical treatment of the receiver substrate, with the highest density approaching ~8 NW/um, ~95% directional alignment and wafer-scale uniformity. Furthermore, we demonstrate that our printing approach enables large-scale integration of NW arrays for various device structures on both Si and plastic substrates, with a controlled semiconductor channel width, and therefore ON current, ranging from a single NW (~10 nm) and up to ~250 um, consisting of a parallel array of over 1,250 NWs.Comment: 14 pages,4 figure

    Comparing computer-generated and pathologist-generated tumour segmentations for immunohistochemical scoring of breast tissue microarrays

    Get PDF
    BACKGROUND: Tissue microarrays (TMAs) have become a valuable resource for biomarker expression in translational research. Immunohistochemical (IHC) assessment of TMAs is the principal method for analysing large numbers of patient samples, but manual IHC assessment of TMAs remains a challenging and laborious task. With advances in image analysis, computer-generated analyses of TMAs have the potential to lessen the burden of expert pathologist review. METHODS: In current commercial software computerised oestrogen receptor (ER) scoring relies on tumour localisation in the form of hand-drawn annotations. In this study, tumour localisation for ER scoring was evaluated comparing computer-generated segmentation masks with those of two specialist breast pathologists. Automatically and manually obtained segmentation masks were used to obtain IHC scores for thirty-two ER-stained invasive breast cancer TMA samples using FDA-approved IHC scoring software. RESULTS: Although pixel-level comparisons showed lower agreement between automated and manual segmentation masks (κ=0.81) than between pathologists' masks (κ=0.91), this had little impact on computed IHC scores (Allred; [Image: see text]=0.91, Quickscore; [Image: see text]=0.92). CONCLUSIONS: The proposed automated system provides consistent measurements thus ensuring standardisation, and shows promise for increasing IHC analysis of nuclear staining in TMAs from large clinical trials

    Inevitable Evolutionary Temporal Elements in Neural Processing: A Study Based on Evolutionary Simulations

    Get PDF
    Recent studies have suggested that some neural computational mechanisms are based on the fine temporal structure of spiking activity. However, less effort has been devoted to investigating the evolutionary aspects of such mechanisms. In this paper we explore the issue of temporal neural computation from an evolutionary point of view, using a genetic simulation of the evolutionary development of neural systems. We evolve neural systems in an environment with selective pressure based on mate finding, and examine the temporal aspects of the evolved systems. In repeating evolutionary sessions, there was a significant increase during evolution in the mutual information between the evolved agent's temporal neural representation and the external environment. In ten different simulated evolutionary sessions, there was an increased effect of time -related neural ablations on the agents' fitness. These results suggest that in some fitness landscapes the emergence of temporal elements in neural computation is almost inevitable. Future research using similar evolutionary simulations may shed new light on various biological mechanisms
    corecore