7,288 research outputs found

    The Unpredictability of the Most Energetic Solar Events

    Full text link
    Observations over the past two solar cycles show a highly irregular pattern of occurrence for major solar flares, gamma-ray events, and solar energetic particle (SEP) fluences. Such phenomena do not appear to follow the direct indices of solar magnetic activity, such as the sunspot number. I show that this results from the non-Poisson occurrence for the most energetic events. This Letter also points out a particularly striking example of this irregularity in a comparison between the declining phases of the recent two solar cycles (1993-1995 and 2004-2006, respectively) and traces it through the radiated energies of the flares, the associated SEP fluences, and the sunspot areas. These factors suggest that processes in the solar interior involved with the supply of magnetic flux up to the surface of the Sun have strong correlations in space and time, leading to a complex occurrence pattern that is presently unpredictable on timescales longer than active region lifetimes (weeks) and not correlated well with the solar cycle itself.Comment: 4 page

    Two-photon interference with thermal light

    Full text link
    The study of entangled states has greatly improved the basic understanding about two-photon interferometry. Two-photon interference is not the interference of two photons but the result of superposition among indistinguishable two-photon amplitudes. The concept of two-photon amplitude, however, has generally been restricted to the case of entangled photons. In this letter we report an experimental study that may extend this concept to the general case of independent photons. The experiment also shows interesting practical applications regarding the possibility of obtaining high resolution interference patterns with thermal sources.Comment: Added reference 1

    New high-efficiency source of photon pairs for engineering quantum entanglement

    Full text link
    We have constructed an efficient source of photon pairs using a waveguide-type nonlinear device and performed a two-photon interference experiment with an unbalanced Michelson interferometer. Parametric down-converted photons from the nonlinear device are detected by two detectors located at the output ports of the interferometer. Because the interferometer is constructed with two optical paths of different length, photons from the shorter path arrive at the detector earlier than those from the longer path. We find that the difference of arrival time and the time window of the coincidence counter are important parameters which determine the boundary between the classical and quantum regime. When the time window of the coincidence counter is smaller than the arrival time difference, fringes of high visibility (80±\pm 10%) were observed. This result is only explained by quantum theory and is clear evidence for quantum entanglement of the interferometer's optical paths.Comment: 4 pages, 4 figures, IQEC200

    Sm-Nd and Rb-Sr Isotopic Studies of Meteorite Kalahari 009: An Old VLT Mare Basalt

    Get PDF
    Lunar meteorite Kalahari 009 is a fragmental basaltic breccia contain ing various very-low-Ti (VLT) mare basalt clasts embedded in a fine-g rained matrix of similar composition. This meteorite and lunar meteorite Kalahari 008, an anorthositic breccia, were suggested to be paired mainly due to the presence of similar fayalitic olivines in fragment s found in both meteorites. Thus, Kalahari 009 probably represents a VLT basalt that came from a locality near a mare-highland boundary r egion of the Moon, as compared to the typical VLT mare basalt samples collected at Mare Crisium during the Luna-24 mission. The concordant Sm-Nd and Ar-Ar ages of such a VLT basalt (24170) suggest that the extrusion of VLT basalts at Mare Crisium occurred 3.30 +/- 0.05 Ga ag o. Previous age results for Kalahari 009 range from approximately 4.2 Ga by its Lu-Hf isochron age to 1.70?0.04 Ga of its Ar-Ar plateau ag e. However, recent in-situ U-Pb dating of phosphates in Kalahari 009 defined an old crystallization age of 4.35+/- 0.15 Ga. The authors su ggested that Kalahari 009 represents a cryptomaria basalt. In this r eport, we present Sm-Nd and Rb-Sr isotopic results for Kalahari 009, discuss the relationship of its age and isotopic characteristics to t hose of other L-24 VLT mare basalts and other probable cryptomaria ba salts represented by Apollo 14 aluminous mare basalts, and discuss it s petrogenesis

    Experimental Entanglement Concentration and Universal Bell-state Synthesizer

    Get PDF
    We report a novel Bell-state synthesizer in which an interferometric entanglement concentration scheme is used. An initially mixed polarization state from type-II spontaneous parametric down-conversion becomes entangled after the interferometric entanglement concentrator. This Bell-state synthesizer is universal in the sense that the output polarization state is not affected by spectral filtering, crystal thickness, and, most importantly, the choice of pump source. It is also robust against environmental disturbance and a more general state, partially mixed-partially entangled state, can be readily generated as well.Comment: Minor update (Newer data

    Rb-Sr And Sm-Nd Ages, and Petrogenesis of Depleted Shergottite Northwest Africa 5990

    Get PDF
    Northwest Africa (NWA) 5990 is a very fresh Martian meteorite recently found on Hamada du Draa, Morocco and was classified as an olivine-bearing diabasic igneous rock related to depleted shergottites [1]. The study of [1] also showed that NWA 5990 resembles QUE 94201 in chemical, textural and isotopic aspects, except QUE 94201 contains no olivine. The depleted shergottites are characterized by REE patterns that are highly depleted in LREE, older Sm-Nd ages of 327-575 Ma and highly LREE-depleted sources with Nd= +35~+48 [2-7]. Age-dating these samples by Sm-Nd and Rb-Sr methods is very challenging because they have been strongly shocked and contain very low abundances of light rare earth elements (Sm and Nd), Rb and Sr. In addition, terrestrial contaminants which are commonly present in desert meteorites will compromise the equilibrium of isotopic systems. Since NWA 5990 is a very fresh meteorite, it probably has not been subject to significant desert weathering and thus is a good sample for isotopic studies. In this report, we present Rb-Sr and Sm-Nd isotopic results for NWA 5990, discuss the correlation of the determined ages with those of other depleted shergottites, especially QUE 94201, and discuss the petrogenesis of depleted shergottites

    Testing Bell's inequality using Aharonov-Casher effect

    Full text link
    We propose the Aharonov-Casher (AC) effect for four entangled spin-half particles carrying magnetic moments in the presence of impenetrable line charge. The four particle state undergoes AC phase shift in two causually disconnected region which can show up in the correlations between different spin states of distant particles. This correlation can violate Bell's inequality, thus displaying the non-locality for four particle entangled states in an objective way. Also, we have suggested how to control the AC phase shift locally at two distant locations to test Bell's inequality. We belive that although the single particle AC effect may not be non-local but the entangled state AC effect is a non-local one.Comment: Latex, 6 pages, no figures, submitted to Phys. Rev.

    Concordant Rb-Sr and Sm-Nd Ages for NWA 1460: A 340 Ma Old Basaltic Shergottite Related to Lherzolitic Shergottites

    Get PDF
    Preliminary Rb-Sr and Sm-Nd ages reported by [1] for the NWA 1460 basaltic shergottite are refined to 336+/-14 Ma and 345+/-21 Ma, respectively. These concordant ages are interpreted as dating a lava flow on the Martian surface. The initial Sr and Nd isotopic compositions of NWA 1460 suggest it is an earlier melting product of a Martian mantle source region similar to those of the lherzolitic shergottites and basaltic shergottite EETA79001, lithology B. We also examine the suggestion that generally "young" ages for other Martian meteorites should be reinterpreted in light of Pb-207/Pb-206 - Pb-204/Pb-206 isotopic systematics [2]. Published U-Pb isotopic data for nakhlites are consistent with ages of approx.1.36 Ga. The UPb isotopic systematics of some Martian shergottites and lherzolites that have been suggested to be approx.4 Ga old [2] are complex. We nevertheless suggest the data are consistent with crystallization ages of approx.173 Ma when variations in the composition of in situ initial Pb as well as extraneous Pb components are considered
    corecore