2,806 research outputs found

    Submilliamp threshold InGaAs-GaAs strained layer quantum-well laser

    Get PDF
    Strained-layer InGaAs-GaAs single-quantum-well buried-heterostructure lasers were fabricated by a hybrid beam epitaxy and liquid-phase epitaxy technique. Very low threshold currents, 2.4 mA for an uncoated laser (L=425 μm) and 0.75 mA for a coated laser (R~0.9, L=198 μm), were obtained. A 3-dB modulation bandwidth of 7.6 GHz was demonstrated at low bias current (14 mA). Procedures for material preparation and device fabrication are introduced

    On the Electron-Electron Interactions in Two Dimensions

    Full text link
    In this paper, we analyze several experiments that address the effects of electron-electron interactions in 2D electron (hole) systems in the regime of low carrier density. The interaction effects result in renormalization of the effective spin susceptibility, effective mass, and g*-factor. We found a good agreement among the data obtained for different 2D electron systems by several experimental teams using different measuring techniques. We conclude that the renormalization is not strongly affected by the material or sample-dependent parameters such as the potential well width, disorder (the carrier mobility), and the bare (band) mass. We demonstrate that the apparent disagreement between the reported results on various 2D electron systems originates mainly from different interpretations of similar "raw" data. Several important issues should be taken into account in the data processing, among them the dependences of the effective mass and spin susceptibility on the in-plane field, and the temperature dependence of the Dingle temperature. The remaining disagreement between the data for various 2D electron systems, on one hand, and the 2D hole system in GaAs, on the other hand, may indicate more complex character of electron-electron interactions in the latter system.Comment: Added refs; corrected typos. 19 pages, 7 figures. To be published in: Chapter 19, Proceedings of the EURESCO conference "Fundamental Problems of Mesoscopic Physics ", Granada, 200

    Nuclear Inelastic X-Ray Scattering of FeO to 48 GPa

    Full text link
    The partial density of vibrational states has been measured for Fe in compressed FeO (w\"ustite) using nuclear resonant inelastic x-ray scattering. Substantial changes have been observed in the overall shape of the density of states close to the magnetic transiton around 20 GPa from the paramagnetic (low pressure) to the antiferromagnetic (high pressure) state. Our data indicate a substantial softening of the aggregate sound velocities far below the transition, starting between 5 and 10 GPa. This is consistent with recent radial x-ray diffraction measurements of the elastic constants in FeO. The results indicate that strong magnetoelastic coupling in FeO is the driving force behind the changes in the phonon spectrum of FeO.Comment: 4 pages, 4 figure

    A novel investigation into the application of non-destructive evaluation for vibration assessment and analysis of in-service pipes

    Get PDF
    Flow induced vibrations that are close to resonance frequencies are a major problem in all oil and gas processing industries, so all piping systems require regular condition monitoring and inspection to assess changes in their dynamic characteristics and structural integrity in order to prevent catastrophic failures. One of the main causes of pipe failure is weak support causing low frequency high amplitude flow-induced vibration. This causes wear and tear, especially near joints due to their dissimilar stiffness resulting in fatigue failure of joints caused by vibration-induced high cyclic stress. Other contributing factors in pipe failure are poor or inadequate design, poor workmanship during installation or maintenance and inadequate or weak and flexible support. These pipes are usually required to work non-stop for 24 hours a day 7 days a week for weeks, months or years at a time. Regular monitoring and in-service dynamic analysis should ensure continuous and safe operation. A novel method of non-destructive testing and evaluation of these pipes, while in service, is proposed in this paper. This technique will enable early detection and identification of the root causes of any impending failure due to excess vibration as a result of cyclic force induced by the flow. The method pinpoints the location of the impending failure prior to condition-based maintenance procedures. The technique relies on the combined application of Operating Deflection Shapes (ODS) analysis and computational mechanics utilizing Finite Element Analysis (FEA), i.e. linear elastic stress analysis. Any structural modification to the pipes and their supports can then be applied virtually and their effects on the system can be analysed. The effect on vibration levels is assessed and verified. The effect of any change in the forces corresponding to changes in the Differential Pressure (DP) at constant flow rate through the pipes can then be estimated. It was concluded that maintaining the differential pressure above some “critical” threshold ensures the pipe operates under the allowable dynamic stress for a theoretically “indefinite” life cycle

    Failure Analysis of Flow-induced Vibration Problem of in-serviced Duplex Stainless Steel Piping System in Oil and Gas Industry

    Get PDF
    Failure of the duplex stainless steel piping system in oil and gas industry can have disastrous effects. In this study, a novel method of failure analysis of flow-induced vibration problem of in-serviced duplex stainless steel piping system is proposed. The proposed non-destructive technique is able to determine a suitable operating condition for continuous operation without failure. The technique relies on the combined operation of operational modal analysis, operating deflection shape analysis and linear elastic finite element analysis. The effect of different operating conditions for two distinct valve opening cases (i.e. fully opened and partially opened) on the dynamic stress is examined, and they are utilised for forecasting purpose in failure analysis. The result shows that maximum operating conditions are 360 and 400 mmscfd for fully opened and partially opened flow control valves, respectively. Beyond this limit, the piping system most likely will fail

    Field-induced polarisation of Dirac valleys in bismuth

    Full text link
    Electrons are offered a valley degree of freedom in presence of particular lattice structures. Manipulating valley degeneracy is the subject matter of an emerging field of investigation, mostly focused on charge transport in graphene. In bulk bismuth, electrons are known to present a threefold valley degeneracy and a Dirac dispersion in each valley. Here we show that because of their huge in-plane mass anisotropy, a flow of Dirac electrons along the trigonal axis is extremely sensitive to the orientation of in-plane magnetic field. Thus, a rotatable magnetic field can be used as a valley valve to tune the contribution of each valley to the total conductivity. According to our measurements, charge conductivity by carriers of a single valley can exceed four-fifth of the total conductivity in a wide range of temperature and magnetic field. At high temperature and low magnetic field, the three valleys are interchangeable and the three-fold symmetry of the underlying lattice is respected. As the temperature lowers and/or the magnetic field increases, this symmetry is spontaneously lost. The latter may be an experimental manifestation of the recently proposed valley-nematic Fermi liquid state.Comment: 14 pages + 5 pages of supplementary information; a slightly modified version will appear as an article in Nature physic
    corecore