7,476 research outputs found

    Field study on adaptive thermal comfort in typical air conditioned classrooms

    Get PDF
    This study investigates adaptive thermal comfort in air conditioned classrooms in Hong Kong. A field survey was conducted in several typical classrooms at the City University of Hong Kong. This survey covered objective measurement of thermal environment parameters and subjective human thermal responses. A total of 982 student volunteers participated in the investigation. The results indicate that students in light clothing (0.42 clo) have adapted to the cooler classroom environments. The neutral temperature is very close to the preferred temperature of approximately 24 °C. Based on the MTSV ranging between −0.5 and + 0.5, the comfort range is between 21.56 °C and 26.75 °C. The lower limit is below that of the ASHRAE standard. Of the predicted mean vote (PMV) and the University of California, Berkeley (UCB) model, the UCB model predictions agree better with the mean thermal sensation vote (MTSV). Also, the respective fit regression models of the MTSV versus each of the following: operative temperature (Top), PMV, and UCB were obtained. This study provides a better understanding of acceptable classroom temperatures

    Quantum Impurities and the Neutron Resonance Peak in YBa2Cu3O7{\bf YBa_2 Cu_3 O_7}: Ni versus Zn

    Full text link
    The influence of magnetic (S=1) and nonmagnetic (S=0) impurities on the spin dynamics of an optimally doped high temperature superconductor is compared in two samples with almost identical superconducting transition temperatures: YBa2_2(Cu0.97_{0.97}Ni0.03_{0.03})3_3O7_7 (Tc_c=80 K) and YBa2_2(Cu0.99_{0.99}Zn0.01_{0.01})3_3O7_7 (Tc_c=78 K). In the Ni-substituted system, the magnetic resonance peak (which is observed at Er_r \simeq40 meV in the pure system) shifts to lower energy with a preserved Er_r/Tc_c ratio while the shift is much smaller upon Zn substitution. By contrast Zn, but not Ni, restores significant spin fluctuations around 40 meV in the normal state. These observations are discussed in the light of models proposed for the magnetic resonance peak.Comment: 3 figures, submitted to PR

    Leptogenesis from Soft Supersymmetry Breaking (Soft Leptogenesis)

    Full text link
    Soft leptogenesis is a scenario in which the cosmic baryon asymmetry is produced from a lepton asymmetry generated in the decays of heavy sneutrinos (the partners of the singlet neutrinos of the seesaw) and where the relevant sources of CP violation are the complex phases of soft supersymmetry-breaking terms. We explain the motivations for soft leptogenesis, and review its basic ingredients: the different CP-violating contributions, the crucial role played by thermal corrections, and the enhancement of the efficiency from lepton flavour effects. We also discuss the high temperature regime T>107T > 10^7 GeV in which the cosmic baryon asymmetry originates from an initial asymmetry of an anomalous RR-charge, and soft leptogenesis reembodies in RR-genesis.Comment: References updated. Some minor corrections to match the published versio

    Magnetic Collective Mode Dispersion in High Temperature Superconductors

    Full text link
    Recent neutron scattering experiments in the superconducting state of YBCO have been interpreted in terms of a magnetic collective mode whose dispersion relative to the commensurate wavevector has a curvature opposite in sign to a conventional magnon dispersion. The purpose of this article is to demonstrate that simple linear response calculations are in support of a collective mode interpretation, and to explain why the dispersion has the curvature it does.Comment: 3 pages, revtex, 4 encapsulated postscript figure

    The scaling properties of exchange and correlation holes of the valence shell of second row atoms

    Full text link
    We study the exchange and correlation hole of the valence shell of second row atoms using variational Monte Carlo techniques, especially correlated estimates, and norm-conserving pseudopotentials. The well-known scaling of the valence shell provides a tool to probe the behavior of exchange and correlation as a functional of the density and thus test models of density functional theory. The exchange hole shows an interesting competition between two scaling forms -- one caused by self-interaction and another that is approximately invariant under particle number, related to the known invariance of exchange under uniform scaling to high density and constant particle number. The correlation hole shows a scaling trend that is marked by the finite size of the atom relative to the radius of the hole. Both trends are well captured in the main by the Perdew-Burke-Ernzerhof generalized-gradient approximation model for the exchange-correlation hole and energy.Comment: 18 pages, 8 figure

    A decidable policy language for history-based transaction monitoring

    Full text link
    Online trading invariably involves dealings between strangers, so it is important for one party to be able to judge objectively the trustworthiness of the other. In such a setting, the decision to trust a user may sensibly be based on that user's past behaviour. We introduce a specification language based on linear temporal logic for expressing a policy for categorising the behaviour patterns of a user depending on its transaction history. We also present an algorithm for checking whether the transaction history obeys the stated policy. To be useful in a real setting, such a language should allow one to express realistic policies which may involve parameter quantification and quantitative or statistical patterns. We introduce several extensions of linear temporal logic to cater for such needs: a restricted form of universal and existential quantification; arbitrary computable functions and relations in the term language; and a "counting" quantifier for counting how many times a formula holds in the past. We then show that model checking a transaction history against a policy, which we call the history-based transaction monitoring problem, is PSPACE-complete in the size of the policy formula and the length of the history. The problem becomes decidable in polynomial time when the policies are fixed. We also consider the problem of transaction monitoring in the case where not all the parameters of actions are observable. We formulate two such "partial observability" monitoring problems, and show their decidability under certain restrictions

    On the full Boltzmann equations for Leptogenesis

    Get PDF
    We consider the full Boltzmann equations for standard and soft leptogenesis, instead of the usual integrated Boltzmann equations which assume kinetic equilibrium for all species. Decays and inverse decays may be inefficient for thermalising the heavy-(s)neutrino distribution function, leading to significant deviations from kinetic equilibrium. We analyse the impact of using the full kinetic equations in the case of a previously generated lepton asymmetry, and find that the washout of this initial asymmetry due to the interactions of the right-handed neutrino is larger than when calculated via the integrated equations. We also solve the full Boltzmann equations for soft leptogenesis, where the lepton asymmetry induced by the soft SUSY-breaking terms in sneutrino decays is a purely thermal effect, since at T=0 the asymmetry in leptons cancels the one in sleptons. In this case, we obtain that in the weak washout regime (K ~< 1) the final lepton asymmetry can change up to a factor four with respect to previous estimates.Comment: 34 pages, 6 figures, to be published in JCA

    Spin dynamics in high-TCT_C superconductors

    Full text link
    Key features of antiferromagnetic dynamical correlations in high-TCT_C superconductors cuprates are discussed. In underdoped regime, the sharp resonance peak, occuring exclusively in the SC state, is accompanied by a broader contribution located around \sim 30 meV which remains above TCT_C. Their interplay may induce incommensurate structure in the superconducting state.Comment: HTS99 Proceedings Miami (January 7-11 1999

    Synthesis and Cell Adhesive Properties of Linear and Cyclic RGD Functionalized Polynorbornene Thin Films

    Get PDF
    Described herein is the efficient synthesis and evaluation of bioactive arginine-glycine-aspartic acid (RGD) functionalized polynorbornene-based materials for cell adhesion and spreading. Polynorbornenes containing either linear or cyclic RGD peptides were synthesized by ring-opening metathesis polymerization (ROMP) using the well-defined ruthenium initiator [(H_(2)IMes)(pyr)_(2)(Cl)_(2)Ru═CHPh]. The random copolymerization of three separate norbornene monomers allowed for the incorporation of water-soluble polyethylene glycol (PEG) moieties, RGD cell recognition motifs, and primary amines for postpolymerization cross-linking. Following polymer synthesis, thin-film hydrogels were formed by cross-linking with bis(sulfosuccinimidyl) suberate (BS^3), and the ability of these materials to support human umbilical vein endothelial cell (HUVEC) adhesion and spreading was evaluated and quantified. When compared to control polymers containing either no peptide or a scrambled RDG peptide, polymers with linear or cyclic RGD at varying concentrations displayed excellent cell adhesive properties in both serum-supplemented and serum-free media. Polymers with cyclic RGD side chains maintained cell adhesion and exhibited comparable integrin binding at a 100-fold lower concentration than those carrying linear RGD peptides. The precise control of monomer incorporation enabled by ROMP allows for quantification of the impact of RGD structure and concentration on cell adhesion and spreading. The results presented here will serve to guide future efforts for the design of RGD functionalized materials with applications in surgery, tissue engineering, and regenerative medicine

    Effects of a Collective Spin Resonance Mode on the STM Spectra of D-Wave Superconductors

    Full text link
    A high-energy spin resonance mode is known to exist in many high-temperature superconductors. Motivated by recent scanning tunneling microscopy (STM) experiments in superconducting Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta}, we study the effects of this resonance mode on the local density of states (LDOS). The coupling between the electrons in a d-wave superconductor and the resonance mode produces high-energy peaks in the LDOS, which displays a two-unit-cell periodic modulation around a nonmagnetic impurity. This suggests a new means to not only detect the dynamical spin collective mode but also study its coupling to electronic excitations.Comment: 5 pages, 4 figures; typos removed; to appear in Physical Review Letter
    corecore