5,769 research outputs found

    Acoustic insertion loss due to two dimensional periodic arrays of circular cylinders parallel to a nearby surface

    Get PDF
    The acoustical performances of regular arrays of cylindrical elements, with their axes aligned and parallel to a ground plane, have been investigated through predictions and laboratory experiments. Semi-analytical predictions based on multiple scattering theory and numerical simulations based on a boundary element formulation have been made. Measurements have been made in an anechoic chamber using arrays of (a) cylindrical acoustically-rigid scatterers (PVC pipes) and (b) thin elastic shells. Insertion loss (IL) spectra due to the arrays have been measured without and with ground planes for several receiver heights. Data and predictions have been compared. The minima in the excess attenuation spectrum i.e., attenuation maxima due to the ground alone resulting from destructive interference between direct and ground-reflected sound waves, tend to have an adverse influence on the band gaps (BG) related to a periodic array in the free field when these two effects coincide. On the other hand, the presence of rigid ground may result in an IL for an array near the ground similar to or, in the case of the first BG, greater than that resulting from a double array, equivalent to the original array plus its ground plane mirror image, in the free field.Comment: J. Acoust. Soc. Am. 130 (6), December 201

    A Bayesian nonparametric approach to dynamic item-response modeling: An application to the GUSTO cohort study

    Get PDF
    Statistical analysis of questionnaire data is often performed employing techniques from item-response theory. In this framework, it is possible to differentiate respondent profiles and characterize the questions (items) included in the questionnaire via interpretable parameters. These models are often crosssectional and aim at evaluating the performance of the respondents. The motivating application of this work is the analysis of psychometric questionnaires taken by a group of mothers at different time points and by their children at one later time point. The data are available through the GUSTO cohort study. To this end, we propose a Bayesian semiparametric model and extend the current literature by: (i) introducing temporal dependence among questionnaires taken at different time points; (ii) jointly modeling the responses to questionnaires taken from different, but related, groups of subjects (in our case mothers and children), introducing a further dependency structure and therefore sharing of information; (iii) allowing clustering of subjects based on their latent response profile. The proposed model is able to identify three main groups of mother/child pairs characterized by their response profiles. Furthermore, we report an interesting maternal reporting bias effect strongly affecting the clustering structure of the mother/child dyads

    A scalar field instability of rotating and charged black holes in (4+1)-dimensional Anti-de Sitter space-time

    Full text link
    We study the stability of static as well as of rotating and charged black holes in (4+1)-dimensional Anti-de Sitter space-time which possess spherical horizon topology. We observe a non-linear instability related to the condensation of a charged, tachyonic scalar field and construct "hairy" black hole solutions of the full system of coupled Einstein, Maxwell and scalar field equations. We observe that the limiting solution for small horizon radius is either a hairy soliton solution or a singular solution that is not a regular extremal solution. Within the context of the gauge/gravity duality the condensation of the scalar field describes a holographic conductor/superconductor phase transition on the surface of a sphere.Comment: 16 pages including 8 figures, v2: discussion on soliton solutions extended; v3: matches version accepted for publication in JHE

    The scalars from the topcolor scenario and the spin correlations of the top pair production at the LHC

    Full text link
    The topcolor scenario predicts the existences of some new scalars. In this paper, we consider the contributions of these new particles to the observables, which are related to the top quark pair (ttˉt\bar{t}) production at the LHC. It is found that these new particles can generate significant corrections to the ttˉt\bar{t} production cross section and the ttˉt\bar{t} spin correlations.Comment: 23 pages, 4 figures; discussions and references added; agrees with published versio

    A study of the turbulence structures of wall-bounded shear flows

    Get PDF
    This project extends the study of the structure of wall-bounded flows using the topological properties of eddying motions as developed by Chong et al. (1990), Soria et al. (1992, 1994), and as recently extended by Blackburn et al. (1996) and Chacin et al. (1996). In these works, regions of flow which are focal in nature are identified by being enclosed by an isosurface of a positive small value of the discriminant of the velocity gradient tensor. These regions resemble the attached vortex loops suggested first by Theodorsen (1955). Such loops are incorporated in the attached eddy model versions of Perry & Chong (1982), Perry et al. (1986), and Perry & Marusic (1995), which are extensions of a model first formulated by Townsend (1976). The DNS data of wall bounded flows studied here are from the zero pressure gradient flow of Spalart (1988) and the boundary layer with separation and reattachment of Na & Moin (1996). The flow structures are examined from the viewpoint of the attached eddy hypothesis

    Thermodynamical Metrics and Black Hole Phase Transitions

    Full text link
    An important phase transition in black hole thermodynamics is associated with the divergence of the specific heat with fixed charge and angular momenta, yet one can demonstrate that neither Ruppeiner's entropy metric nor Weinhold's energy metric reveals this phase transition. In this paper, we introduce a new thermodynamical metric based on the Hessian matrix of several free energy. We demonstrate, by studying various charged and rotating black holes, that the divergence of the specific heat corresponds to the curvature singularity of this new metric. We further investigate metrics on all thermodynamical potentials generated by Legendre transformations and study correspondences between curvature singularities and phase transition signals. We show in general that for a system with n-pairs of intensive/extensive variables, all thermodynamical potential metrics can be embedded into a flat (n,n)-dimensional space. We also generalize the Ruppeiner metrics and they are all conformal to the metrics constructed from the relevant thermodynamical potentials.Comment: Latex, 25 pages, reference added, typos corrected, English polished and the Hawking-Page phase transition clarified; to appear in JHE

    Paving the way for culturally competent robots: a position paper

    Get PDF
    Cultural competence is a well known requirement for an effective healthcare, widely investigated in the nursing literature. We claim that personal assistive robots should likewise be culturally competent, aware of general cultural characteristics and of the different forms they take indifferent individuals, and sensitive to cultural differences while perceiving, reasoning, and acting. Drawing inspiration from existing guidelines for culturally competent healthcare and the state-of-the-art in culturally competent robotics, we identify the key robot capabilities which enable culturally competent behaviours and discuss methodologies for their development and evaluation

    Ab-initio multimode linewidth theory for arbitrary inhomogeneous laser cavities

    Get PDF
    We present a multimode laser-linewidth theory for arbitrary cavity structures and geometries that contains nearly all previously known effects and also finds new nonlinear and multimode corrections, e.g. a bad-cavity correction to the Henry α\alpha factor and a multimode Schawlow--Townes relation (each linewidth is proportional to a sum of inverse powers of all lasing modes). Our theory produces a quantitatively accurate formula for the linewidth, with no free parameters, including the full spatial degrees of freedom of the system. Starting with the Maxwell--Bloch equations, we handle quantum and thermal noise by introducing random currents whose correlations are given by the fluctuation--dissipation theorem. We derive coupled-mode equations for the lasing-mode amplitudes and obtain a formula for the linewidths in terms of simple integrals over the steady-state lasing modes.Comment: 24 pages, 7 figure

    Occupational therapists’ views of using a virtual reality interior design application within the pre-discharge home visit process

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund.Background: A key role of Occupational Therapists (OTs) is to carry out pre-discharge home visits (PHV) and propose appropriate adaptations to the home environment, to enable patients to function independently after hospital-home discharge. However, research shows that more than 50% of specialist equipment installed as part of home adaptations is not used by patients. A key reason for this is that decisions about home adaptations are often made without adequate collaboration and consultation with the patient. Consequently, there is an urgent need to seek out new and innovative uses of technology to facilitate patient/practitioner collaboration, engagement and shared decision making in the PHV process. Virtual reality interior design applications (VRIDAs) primarily allow users to simulate the home environment and visualise changes prior to implementing them. Customised VRIDAs, which also model specialist occupational therapy equipment, could become a valuable tool to facilitate improved patient/practitioner collaboration if developed effectively and integrated into the PHV process. Objective: To explore the perceptions of occupational therapists with regards to using VRIDAs as an assistive tool within the PHV process. Methods: Task-oriented interactive usability sessions, utilising the think-aloud protocol and subsequent semi-structured interviews were carried out with seven Occupational Therapists who possessed significant experience across a range of clinical settings. Template analysis was carried out on the think-aloud and interview data. Analysis was both inductive and driven by theory, centring around the parameters that impact upon the acceptance, adoption and use of this technology in practice as indicated by the Technology Acceptance Model (TAM). Results: OTs’ perceptions were identified relating to three core themes: (1) perceived usefulness (PU), (2) perceived ease of use (PEoU), and (3) actual use (AU). Regarding PU, OTs believed VRIDAs had promising potential to increase understanding, enrich communications and patient involvement, and improved patient/practitioner shared understanding. However, it was unlikely that VRIDAs would be suitable for use with cognitively impaired patients. For PEoU, all OTs were able to use the software and complete the tasks successfully, however, participants noted numerous specialist equipment items that could be added to the furniture library. AU perceptions were positive regarding use of the application across a range of clinical settings including children/young adults, long-term conditions, neurology, older adults, and social services. However, some “fine tuning” may be necessary if the application is to be optimally used in practice. Conclusions: Participants perceived the use of VRIDAs in practice would enhance levels of patient/practitioner collaboration and provide a much needed mechanism via which patients are empowered to become more equal partners in decisions made about their care. Further research is needed to explore patient perceptions of VRIDAs, to make necessary customisations accordingly, and to explore deployment of the application in a collaborative patient/practitioner-based context
    corecore