14,724 research outputs found

    Incomplete Protection of the Surface Weyl Cones of the Kondo Insulator SmB6_6: Spin Exciton Scattering

    Full text link
    The compound SmB6_6 is a Kondo Insulator, where the lowest-energy bulk electronic excitations are spin excitons. It also has surface states that are subjected to strong spin-orbit coupling. It has been suggested that SmB6_6 is also a topological insulator. Here we show that, despite the absence of time-reversal symmetry breaking and the presence of strong spin-orbit coupling, the chiral spin texture of the Weyl cone is not completely protected. In particular, we show that the spin-exciton mediated scattering produces features in the surface electronic spectrum at energies separated from the surface Fermi energy by the spin-exciton energy. Despite the features being far removed from the surface Fermi energy, they are extremely temperature dependent. The temperature variation occurs over a characteristic scale determined by the dispersion of the spin exciton. The structures may be observed by electron spectroscopy at low temperatures.Comment: 7 pages, 5 figure

    Epitaxial growth of (111)-oriented LaAlO3_3/LaNiO3_3 ultra-thin superlattices

    Full text link
    The epitaxial stabilization of a single layer or superlattice structures composed of complex oxide materials on polar (111) surfaces is severely burdened by reconstructions at the interface, that commonly arise to neutralize the polarity. We report on the synthesis of high quality LaNiO3_3/mLaAlO3_3 pseudo cubic (111) superlattices on polar (111)-oriented LaAlO3_3, the proposed complex oxide candidate for a topological insulating behavior. Comprehensive X-Ray diffraction measurements, RHEED, and element specific resonant X-ray absorption spectroscopy affirm their high structural and chemical quality. The study offers an opportunity to fabricate interesting interface and topology controlled (111) oriented superlattices based on ortho-nickelates

    Evaluating the Usability of Automatically Generated Captions for People who are Deaf or Hard of Hearing

    Full text link
    The accuracy of Automated Speech Recognition (ASR) technology has improved, but it is still imperfect in many settings. Researchers who evaluate ASR performance often focus on improving the Word Error Rate (WER) metric, but WER has been found to have little correlation with human-subject performance on many applications. We propose a new captioning-focused evaluation metric that better predicts the impact of ASR recognition errors on the usability of automatically generated captions for people who are Deaf or Hard of Hearing (DHH). Through a user study with 30 DHH users, we compared our new metric with the traditional WER metric on a caption usability evaluation task. In a side-by-side comparison of pairs of ASR text output (with identical WER), the texts preferred by our new metric were preferred by DHH participants. Further, our metric had significantly higher correlation with DHH participants' subjective scores on the usability of a caption, as compared to the correlation between WER metric and participant subjective scores. This new metric could be used to select ASR systems for captioning applications, and it may be a better metric for ASR researchers to consider when optimizing ASR systems.Comment: 10 pages, 8 figures, published in ACM SIGACCESS Conference on Computers and Accessibility (ASSETS '17

    Control spiral wave dynamics using feedback signals from line detectors

    Full text link
    We numerically study trajectories of spiral-wave-cores in excitable systems modulated proportionally to the integral of the activity on the straight line, several or dozens of equi-spaced measuring points on the straight line, the double-line and the contour-line. We show the single-line feedback results in the drift of core center along a straight line being parallel to the detector. An interesting finding is that the drift location in yy is a piecewise linear-increasing function of both the feedback line location and time delay. Similar trajectory occurs when replacing the feedback line with several or dozens of equi-spaced measuring points on the straight line. This allows to move the spiral core to the desired location along a chosen direction by measuring several or dozens of points. Under the double-line feedback, the shape of the tip trajectory representing the competition between the first and second feedback lines is determined by the distance of two lines. Various drift attractors in spiral wave controlled by square-shaped contour-line feedback are also investigated. A brief explanation is presented.Comment: 6 pages and 7 figures; Accepted for publication in EPL; Figs.5 and 6 are in JPG forma

    Equation of State for Parallel Rigid Spherocylinders

    Full text link
    The pair distribution function of monodisperse rigid spherocylinders is calculated by Shinomoto's method, which was originally proposed for hard spheres. The equation of state is derived by two different routes: Shinomoto's original route, in which a hard wall is introduced to estimate the pressure exerted on it, and the virial route. The pressure from Shinomoto's original route is valid only when the length-to-width ratio is less than or equal to 0.25 (i.e., when the spherocylinders are nearly spherical). The virial equation of state is shown to agree very well with the results of numerical simulations of spherocylinders with length-to-width ratio greater than or equal to 2

    Classification-driven search for effective sm partitioning in multitasking GPUs

    Get PDF
    Graphics processing units (GPUs) feature an increasing number of streaming multiprocessors (SMs) with each successive generation. At the same time, GPUs are increasingly widely adopted in cloud services and data centers to accelerate general-purpose workloads. Running multiple applications on a GPU in such environments requires effective multitasking support. Spatial multitasking in which independent applications co-execute on different sets of SMs is a promising solution to share GPU resources. Unfortunately, how to effectively partition SMs is an open problem. In this paper, we observe that compared to widely-used even partitioning, dynamic SM partitioning based on the characteristics of the co-executing applications can significantly improve performance and power efficiency. Unfortunately, finding an effective SM partition is challenging because the number of possible combinations increases exponentially with the number of SMs and co-executing applications. Through offline analysis, we find that first classifying workloads, and then searching an effective SM partition based on the workload characteristics can significantly reduce the search space, making dynamic SM partitioning tractable. Based on these insights, we propose Classification-Driven search (CD-search) for low-overhead dynamic SM partitioning in multitasking GPUs. CD-search first classifies workloads using a novel off-SM bandwidth model, after which it enters the performance mode or power mode depending on the workload's characteristics. Both modes follow a specific search strategy to quickly determine the optimum SM partition. Our evaluation shows that CD-search improves system throughput by 10.4% on average (and up to 62.9%) over even partitioning for workloads that are classified for the performance mode. For workloads classified for the power mode, CD-search reduces power consumption by 25% on average (and up to 41.2%). CD-search incurs limited runtime overhead

    Open Transactions on Shared Memory

    Full text link
    Transactional memory has arisen as a good way for solving many of the issues of lock-based programming. However, most implementations admit isolated transactions only, which are not adequate when we have to coordinate communicating processes. To this end, in this paper we present OCTM, an Haskell-like language with open transactions over shared transactional memory: processes can join transactions at runtime just by accessing to shared variables. Thus a transaction can co-operate with the environment through shared variables, but if it is rolled-back, also all its effects on the environment are retracted. For proving the expressive power of TCCS we give an implementation of TCCS, a CCS-like calculus with open transactions

    Faraday Tomography of the North Polar Spur: Constraints on the distance to the Spur and on the Magnetic Field of the Galaxy

    Get PDF
    We present radio continuum and polarization images of the North Polar Spur (NPS) from the Global Magneto-Ionic Medium Survey (GMIMS) conducted with the Dominion Radio Astrophysical Observatory 26-m Telescope. We fit polarization angle versus wavelength squared over 2048 frequency channels from 1280 to 1750 MHz to obtain a Faraday Rotation Measure (RM) map of the NPS. Combining this RM map with a published Faraday depth map of the entire Galaxy in this direction, we derive the Faraday depth introduced by the NPS and the Galactic interstellar medium (ISM) in front of and behind the NPS. The Faraday depth contributed by the NPS is close to zero, indicating that the NPS is an emitting only feature. The Faraday depth caused by the ISM in front of the NPS is consistent with zero at b>50 degree, implying that this part of the NPS is local at a distance of approximately several hundred parsecs. The Faraday depth contributed by the ISM behind the NPS gradually increases with Galactic latitude up to b=44 degree, and decreases at higher Galactic latitudes. This implies that either the part of the NPS at b<44 degree is distant or the NPS is local but there is a sign change of the large-scale magnetic field. If the NPS is local, there is then no evidence for a large-scale anti-symmetry pattern in the Faraday depth of the Milky Way. The Faraday depth introduced by the ISM behind the NPS at latitudes b>50 degree can be explained by including a coherent vertical magnetic field.Comment: 9 pages, 8 figures, accepted for publication in ApJ. Some figures have been degraded to reduce sizes, for a high resolution version, see http://physics.usyd.edu.au/~xhsun/ms_nps.pd
    corecore