5,172 research outputs found
PH14-8Mo stainless steel honey comb core shear strength at elevated temperatures, 1 July 1968 - 1 July 1969
PH-8Mo stainless steel honeycomb sandwich cor
The value of continuous professional development: Teachers' perceptions
The central argument is that in the presentation of workshops for teachers, presenters should focus on the principles underlying continuous professional development (CPD), since teachers are likely to be more willing to attend workshops if they are worth the time spent and the sacrifices made. In a workshop, on supporting learners with learning difficulties, such principles were therefore applied. A hands-on presentation was used to ensure that the teachers fully understood the use of the suggested teaching methods. The teachers were then asked to complete a questionnaire to determine their perceptions of how they had experienced the workshop. The questionnaire focused on the various CPD principles applied in the workshop, as well as the personal value and expected effect of the workshop on their teaching approach. In general, the teachers reported that regardless of their teaching position, qualifications, gender, or age they had experienced the CPD workshop positively. Keywords: continuous professional development; in-service training; learning difficulties; teaching methods; workshop South African Journal of Education Vol. 27 (1) 2007: pp. 53-6
Roll diffusion bonding of titanium alloy panels
Roll diffusion bonding technique is used for fabricating T-stiffened panel assemblies from titanium alloy. The single unit fabrication exhibits excellent strength characteristics under tensile and compressive loads. This program is applied to structures in which weight/strength ratio and integral construction are important considerations
Exotic Statistics for Ordinary Particles in Quantum Gravity
Objects exhibiting statistics other than the familiar Bose and Fermi ones are
natural in theories with topologically nontrivial objects including geons,
strings, and black holes. It is argued here from several viewpoints that the
statistics of ordinary particles with which we are already familiar are likely
to be modified due to quantum gravity effects. In particular, such
modifications are argued to be present in loop quantum gravity and in any
theory which represents spacetime in a fundamentally piecewise-linear fashion.
The appearance of unusual statistics may be a generic feature (such as the
deformed position-momentum uncertainty relations and the appearance of a
fundamental length scale) which are to be expected in any theory of quantum
gravity, and which could be testable.Comment: Awarded an honourable mention in the 2008 Gravity Research Foundation
Essay Competitio
The Post-Newtonian Limit of f(R)-gravity in the Harmonic Gauge
A general analytic procedure is developed for the post-Newtonian limit of
-gravity with metric approach in the Jordan frame by using the harmonic
gauge condition. In a pure perturbative framework and by using the Green
function method a general scheme of solutions up to order is shown.
Considering the Taylor expansion of a generic function it is possible to
parameterize the solutions by derivatives of . At Newtonian order,
, all more important topics about the Gauss and Birkhoff theorem are
discussed. The corrections to "standard" gravitational potential
(-component of metric tensor) generated by an extended uniform mass
ball-like source are calculated up to order. The corrections, Yukawa
and oscillating-like, are found inside and outside the mass distribution. At
last when the limit is considered the -gravity converges
in General Relativity at level of Lagrangian, field equations and their
solutions.Comment: 16 pages, 10 figure
Absence of classical and quantum mixing
It is shown, under mild assumptions, that classical degrees of freedom
dynamically coupled to quantum ones do not inherit their quantum fluctuations.
It is further shown that, if the assumptions are strengthen by imposing the
existence of a canonical structure, only purely classical or purely quantum
dynamics are allowed.Comment: REVTeX, 4 page
Semiclassical thermodynamics of scalar fields
We present a systematic semiclassical procedure to compute the partition
function for scalar field theories at finite temperature. The central objects
in our scheme are the solutions of the classical equations of motion in
imaginary time, with spatially independent boundary conditions. Field
fluctuations -- both field deviations around these classical solutions, and
fluctuations of the boundary value of the fields -- are resummed in a Gaussian
approximation. In our final expression for the partition function, this
resummation is reduced to solving certain ordinary differential equations.
Moreover, we show that it is renormalizable with the usual 1-loop counterterms.Comment: 24 pages, 5 postscript figure
Low-Energy Effective Action in Non-Perturbative Electrodynamics in Curved Spacetime
We study the heat kernel for the Laplace type partial differential operator
acting on smooth sections of a complex spin-tensor bundle over a generic
-dimensional Riemannian manifold. Assuming that the curvature of the U(1)
connection (that we call the electromagnetic field) is constant we compute the
first two coefficients of the non-perturbative asymptotic expansion of the heat
kernel which are of zero and the first order in Riemannian curvature and of
arbitrary order in the electromagnetic field. We apply these results to the
study of the effective action in non-perturbative electrodynamics in four
dimensions and derive a generalization of the Schwinger's result for the
creation of scalar and spinor particles in electromagnetic field induced by the
gravitational field. We discover a new infrared divergence in the imaginary
part of the effective action due to the gravitational corrections, which seems
to be a new physical effect.Comment: LaTeX, 42 page
- …