712 research outputs found

    Sperimagnetism in Fe(78)Er(5)B(17) and Fe(64)Er(19)B(17) metallic glasses: II. Collinear components and ferrimagnetic compensation

    Get PDF
    Magnetization measurements on an Fe(64)Er(19)B(17) glass and polarized-beam neutron scattering measurements on Fe(78)Er(5)B(17) and Fe(64)Er(19)B(17) were described in part I. The finite spin-flip neutron scattering cross sections were calculated using a sperimagnetic structure based on random cone arrangements of the magnetic moments. The temperature variation of the cross sections of Fe(64)Er(19)B(17) suggested that a compensated sperimagnetic phase existed at T(comp). The analysis of the non-spin-flip neutron scattering cross sections is described here in part II. Two spin-dependent total structure factors S(+/-+/-). (Q) were defined from these cross sections and, despite the limited range of the data 0.5 angstrom(-1) , are zero on both sublattices in the compensated sperimagnetic structure at T(comp). The pre-peak in the spin-dependent total structure factors at 112 K showed that it originated in the atomic structure and it may involve Fe-Er-Fe 'collineations' at a radial distance of approximate to 6.0 angstrom. Finally, the RDF(+/-+/-) (r) of Fe(64)Er(19)B(17) at 180 K and of Fe(78)Er(5)B(17) at 2 K show that both glasses have the (mu(Fe) UP:mu(Er) DOWN) structure like the (Fe, Tb)(83)B(17) collinear ferrimagnets

    Conservation and Nature Education

    Get PDF

    The magnetic exchange parameters and anisotropy of the quasi-two dimensional antiferromagnet NiPS3_3

    Full text link
    Neutron inelastic scattering has been used to measure the magnetic excitations in powdered NiPS3_3, a quasi-two dimensional antiferromagnet with spin S=1S = 1 on a honeycomb lattice. The spectra show clear, dispersive magnons with a 7\sim 7 meV gap at the Brillouin zone center. The data were fitted using a Heisenberg Hamiltonian with a single-ion anisotropy assuming no magnetic exchange between the honeycomb planes. Magnetic exchange interactions up to the third intraplanar nearest-neighbour were required. The fits show robustly that NiPS3_3 has an easy axis anisotropy with Δ=0.3\Delta = 0.3 meV and that the third nearest-neighbour has a strong antiferromagnetic exchange of J3=6.90J_3 = -6.90 meV. The data can be fitted reasonably well with either J1<0J_1 < 0 or J1>0J_1 > 0, however the best quantitative agreement with high-resolution data indicate that the nearest-neighbour interaction is ferromagnetic with J1=1.9J_1 = 1.9 meV and that the second nearest-neighbour exchange is small and antiferromagnetic with J2=0.1J_2 = -0.1 meV. The dispersion has a minimum in the Brillouin zone corner that is slightly larger than that at the Brillouin zone center, indicating that the magnetic structure of NiPS3_3 is close to being unstable.Comment: 21 pages, 7 figures, 33 reference

    Evidence for biquadratic exchange in the quasi-two-dimensional antiferromagnet FePS3_3

    Full text link
    FePS3_3 is a van der Waals compound with a honeycomb lattice that is a good example of a two-dimensional antiferromagnet with Ising-like anisotropy. Neutron spectroscopy data from FePS3 were previously analysed using a straight-forward Heisenberg Hamiltonian with a single-ion anisotropy. The analysis captured most of the elements of the data, however some significant discrepancies remained. The discrepancies were most obvious at the Brillouin zone boundaries. The data are subsequently reanalysed allowing for unequal exchange between nominally equivalent nearest-neighbours, which resolves the discrepancies. The source of the unequal exchange is attributed to a biquadratic exchange term in the Hamiltonian which most probably arises from a strong magnetolattice coupling. The new parameters show that there are features consistent with Dirac magnon nodal lines along certain Brillouin zone boundaries.Comment: 8 pages, 4 figures. The following article has been accepted by the Journal of Applied Physics. After it is published, it will be found at (https://publishing.aip.org/resources/librarians/products/journals/). The article was submitted as part of a special topic edition (https://publishing.aip.org/publications/journals/special-topics/jap/2d-quantum-materials-magnetism-and-superconductivity/

    Coupled Magnetic Excitations in Single Crystal PrBa2Cu3O6.2

    Full text link
    The dispersion of the low-energy magnetic excitations of the Pr sublattice in PrBa2Cu3O6.2 is determined by inelastic neutron scattering measurements on a single crystal. The dispersion, which shows the effect of interactions with the Cu spin-waves, is well described by a model of the coupled Cu-Pr magnetic system. This enables values for the principal exchange constants to be determined, which suggest that both Pr-Pr and Cu-Pr interactions are important in producing the anomalously high ordering temperature of the Pr sublattice. Measurements of the Cu optic spin wave mode show that the inter-layer Cu-Cu exchange is significantly lower than in YBa2Cu3O6.2.Comment: To be published Phys. Rev. Let

    Neutron polarisation analysis of Polymer: Fullerene blends for organic photovoltaics

    Get PDF
    The photogeneration process in polymer-fullerene organic solar cells relies strongly on the nanostructure and on the nano/picosecond dynamics occurring in these complex blends. Elastic and inelastic neutron scattering techniques are valuable tools with which to investigate those features in the appropriate time and space domains. In particular, quasi-elastic neutron scattering (QENS) connects useful structural and dynamical information by the measurement of dynamical incoherent (single particle) fluctuations in soft materials as a function of lengthscale. Extraction of these fluctuation rates can, however, be hampered by the presence of coherent contributions, originating from elastic scattering, and/or inelastic scattering modes which overlap in the space/time domain with the incoherent single-particle motions. As we have already seen in a previous study [1], this happens in poly(3-hexylthiophene) (P3HT) and [6,6]-Phenyl C61 butyric acid methyl ester (PCBM) solid blends, in which the coherent contribution arising from the PCBM crystalline phase seems to affect the interpretation of the polymer dynamics. Here, we utilise neutron polarisation analysis as an effective tool to separate coherent and incoherent contributions and make QENS data analysis of these blends more reliable

    Real-space investigation of short-range magnetic correlations in fluoride pyrochlores NaCaCo2_2F7_7 and NaSrCo2_2F7_7 with magnetic pair distribution function analysis

    Full text link
    We present time-of-flight neutron total scattering and polarized neutron scattering measurements of the magnetically frustrated compounds NaCaCo2_2F7_7 and NaSrCo2_2F7_7, which belong to a class of recently discovered pyrochlore compounds based on transition metals and fluorine. The magnetic pair distribution function (mPDF) technique is used to analyze and model the total scattering data in real space. We find that a previously-proposed model of short-range XY-like correlations with a length scale of 10-15 \AA, combined with nearest-neighbor collinear antiferromagnetic correlations, accurately describes the mPDF data at low temperature, confirming the magnetic ground state in these materials. This model is further verified by the polarized neutron scattering data. From an analysis of the temperature dependence of the mPDF and polarized neutron scattering data, we find that short-range correlations persist on the nearest-neighbor length scale up to 200 K, approximately two orders of magnitude higher than the spin freezing temperatures of these compounds. These results highlight the opportunity presented by these new pyrochlore compounds to study the effects of geometric frustration at relatively high temperatures, while also advancing the mPDF technique and providing a novel opportunity to investigate a genuinely short-range-ordered magnetic ground state directly in real space

    Experimental Proof of a Magnetic Coulomb Phase

    Full text link
    Spin ice materials are magnetic substances in which the spin directions map onto hydrogen positions in water ice. Recently this analogy has been elevated to an electromagnetic equivalence, indicating that the spin ice state is a Coulomb phase, with magnetic monopole excitations analogous to ice's mobile ionic defects. No Coulomb phase has yet been proved in a real magnetic material, as the key experimental signature is difficult to resolve in most systems. Here we measure the scattering of polarised neutrons from the prototypical spin ice Ho2Ti2O7. This enables us to separate different contributions to the magnetic correlations to clearly demonstrate the existence of an almost perfect Coulomb phase in this material. The temperature dependence of the scattering is consistent with the existence of deconfined magnetic monopoles connected by Dirac strings of divergent length.Comment: 18 pages, 4 fig
    corecore