research

The magnetic exchange parameters and anisotropy of the quasi-two dimensional antiferromagnet NiPS3_3

Abstract

Neutron inelastic scattering has been used to measure the magnetic excitations in powdered NiPS3_3, a quasi-two dimensional antiferromagnet with spin S=1S = 1 on a honeycomb lattice. The spectra show clear, dispersive magnons with a 7\sim 7 meV gap at the Brillouin zone center. The data were fitted using a Heisenberg Hamiltonian with a single-ion anisotropy assuming no magnetic exchange between the honeycomb planes. Magnetic exchange interactions up to the third intraplanar nearest-neighbour were required. The fits show robustly that NiPS3_3 has an easy axis anisotropy with Δ=0.3\Delta = 0.3 meV and that the third nearest-neighbour has a strong antiferromagnetic exchange of J3=6.90J_3 = -6.90 meV. The data can be fitted reasonably well with either J1<0J_1 < 0 or J1>0J_1 > 0, however the best quantitative agreement with high-resolution data indicate that the nearest-neighbour interaction is ferromagnetic with J1=1.9J_1 = 1.9 meV and that the second nearest-neighbour exchange is small and antiferromagnetic with J2=0.1J_2 = -0.1 meV. The dispersion has a minimum in the Brillouin zone corner that is slightly larger than that at the Brillouin zone center, indicating that the magnetic structure of NiPS3_3 is close to being unstable.Comment: 21 pages, 7 figures, 33 reference

    Similar works