563 research outputs found

    The First Data Release from SweetSpot: 74 Supernovae in 36 Nights on WIYN+WHIRC

    Full text link
    SweetSpot is a three-year National Optical Astronomy Observatory (NOAO) Survey program to observe Type Ia supernovae (SNe Ia) in the smooth Hubble flow with the WIYN High-resolution Infrared Camera (WHIRC) on the WIYN 3.5-m telescope. We here present data from the first half of this survey, covering the 2011B-2013B NOAO semesters, and consisting of 493 calibrated images of 74 SNe Ia observed in the rest-frame near-infrared (NIR) from 0.02<z<0.090.02 < z < 0.09. Because many observed supernovae require host galaxy subtraction from templates taken in later semesters, this release contains only the 186 NIR (JHKsJHK_s) data points for the 33 SNe Ia that do not require host-galaxy subtraction. The sample includes 4 objects with coverage beginning before the epoch of B-band maximum and 27 beginning within 20 days of B-band maximum. We also provide photometric calibration between the WIYN+WHIRC and Two-Micron All Sky Survey (2MASS) systems along with light curves for 786 2MASS stars observed alongside the SNe Ia. This work is the first in a planned series of three SweetSpot Data Releases. Future releases will include the full set of images from all 3 years of the survey, including host-galaxy reference images and updated data processing and host-galaxy reference subtraction. SweetSpot will provide a well-calibrated sample that will help improve our ability to standardize distance measurements to SNe Ia, examine the intrinsic optical-NIR colors of SNe Ia at different epochs, explore nature of dust in other galaxies, and act as a stepping stone for more distant, potentially space-based surveys.Comment: Published in AJ. 10 tables. 11 figures. Lightcurve plots included as a figureset and available in source tarball. Data online at http://www.phyast.pitt.edu/~wmwv/SweetSpot/DR1_data

    Predictive processing in depression: Increased prediction error following negative valence contexts and influence of recent mood-congruent yet irrelevant experiences

    Get PDF
    DepressiĂł psĂ­quica; Emocions; ExpressiĂł facialDepression; Emotions; Facial ExpressionDepresiĂłn; Emociones; ExpresiĂłn facialBackground: Novel theoretical models of depression have recently emerged based on an influential new perspective in neuroscience known as predictive processing. In these models, depression may be understood as an imbalance of predictive signals in the brain; more specifically, a dominance of predictions leading to a relative insensitivity to prediction error. Despite these important theoretical advances, empirical evidence remains limited, and how expectations are generated and used dynamically in individuals with depression remains largely unexplored. Methods: In this study, we induced facial expression predictions using emotion contexts in 34 individuals with depression and 34 healthy controls. Results: Compared to controls, individuals with depression perceived displayed facial expressions as less similar to their expectations (i.e., increased difference between expectations and actual sensory input) following contexts evoking negative valence emotions, indicating that depressed individuals have increased prediction error in such contexts. This effect was amplified by recent mood-congruent yet irrelevant experiences. Limitations: The clinical sample included participants with comorbid psychopathology and taking medication. Additionally, the two groups were not evaluated in the same setting, and only three emotion categories (fear, sadness, and happiness) were explored. Conclusions: Our results shed light on potential mechanisms underlying processing abnormalities regarding negative information, which has been consistently reported in depression, and may be a relevant point of departure for exploring transdiagnostic vulnerability to mental illness. Our data also has the potential to improve clinical practice through the implementation of novel diagnostic and therapeutic tools based on the assessment and modulation of predictive signals

    Group IIa secretory phospholipase expression correlates with group IIa secretory phospholipase inhibition–mediated cell death in K-ras mutant lung cancer cells

    Get PDF
    ObjectiveThere are currently no targeted therapies against lung tumors with oncogenic K-ras mutations that are found in 25% to -40% of lung cancers and are characterized by their resistance to epidermal growth factor receptor inhibitors. The isozyme group IIa secretory phospholipase A2 (sPLA2IIa) is a potential biomarker and regulator of lung cancer cell invasion; however, the relationship between K-ras mutations and sPLA2IIa has yet to be investigated. We hypothesize that sPLA2IIa modulates lung cancer cell growth in K-ras mutant cells and that sPLA2IIa expression in human lung tumors is increased in K-ras mutant tumors.MethodsBaseline sPLA2IIa expression in K-ras mutant lung cancer cell lines (A549, SW1573, H358, H2009) was assessed. Cells were treated with a specific sPLA2IIa inhibitor and evaluated for apoptosis and cell viability. Nuclear factor kappa-b (NF-ÎşB) and extracellular signal-regulated kinase 1/2 activity were detected by Western blot. Human tumor samples were evaluated for sPLA2IIa mRNA expression by quantitative reverse-transcription polymerase chain reaction.ResultsCytotoxicity of sPLA2IIa inhibition correlates with sPLA2IIa expression. Apoptosis in response to sPLA2 inhibition parallels attenuation in NF-ÎşB activity. In addition, sPLA2IIa expression in human tumors correlates with squamous cell pathology and increasing stage of K-ras mutant lung tumors.ConclusionsBaseline sPLA2IIa expression predicts response to sPLA2IIa inhibition in some K-ras mutant lung cancer cells. This finding is independent of p53 mutation status. Furthermore, squamous tumors and advanced-stage K-ras mutant tumors express more sPLA2IIa. These data support a role for sPLA2IIa as a potential global therapeutic target in the treatment of lung cancer

    Are Type Ia Supernovae in Rest-frame H Brighter in More Massive Galaxies?

    Get PDF
    K.A.P., M.W.-V., and L.G. were supported in part by the US National Science Foundation under grant AST-1311862. K.A. P. additionally acknowledges support from PITT PACC. K.A. P. was also supported in part by the Berkeley Center for Cosmological Physics and the Director, Office of Science, Office of High Energy Physics of the U.S. Department of Energy under contract No. DE-AC02-05CH11231 and U.S. Department of Energy Office of Science under contract No. DE-AC02-76SF00515. L.G. was additionally funded in part by the European Union's Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement No. 839090. We thank the referee, whose comments have improved this paper, and Saurabh Jha, Kyle Boone, and Ravi Gupta for useful conversations. This research has made use of the NASA/IPAC Extragalactic Database (NED), which is funded by the National Aeronautics and Space Administration and operated by the California Institute of Technology. Funding for the Sloan Digital Sky Survey IV has been provided by the Alfred P. Sloan Foundation, the U.S. Department of Energy Office of Science, and the Participating Institutions. SDSS-IV acknowledges support and resources from the Center for High-Performance Computing at the University of Utah. The SDSS website is www.sdss.org. SDSS-IV is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS Collaboration, including the Brazilian Participation Group, the Carnegie Institution for Science, Carnegie Mellon University, the Chilean Participation Group, the French Participation Group, Harvard-Smithsonian Center for Astrophysics, Instituto de Astrofisica de Canarias, Johns Hopkins University, Kavli Institute for the Physics and Mathematics of the Universe (IPMU)/University of Tokyo, Lawrence Berkeley National Laboratory, Leibniz Institut fur Astrophysik Potsdam (AIP), Max-Planck-Institut fur Astronomie (MPIA Heidelberg), Max-Planck-Institut fur Astrophysik (MPA Garching), Max-Planck-Institut fur Extraterrestrische Physik (MPE), National Astronomical Observatories of China, New Mexico State University, New York University, University of Notre Dame, Observatario Nacional/MCTI, The Ohio State University, Pennsylvania State University, Shanghai Astronomical Observatory, United Kingdom Participation Group, Universidad Nacional Autonoma de Mexico, University of Arizona, University of Colorado Boulder, University of Oxford, University of Portsmouth, University of Utah, University of Virginia, University of Washington, University of Wisconsin, Vanderbilt University, and Yale University. This research uses services or data provided by the Astro Data Lab at NSF's National Optical-Infrared Astronomy Research Laboratory. NOIRLab is operated by the Association of Universities for Research in Astronomy (AURA), Inc., under a cooperative agreement with the National Science Foundation. The Legacy Surveys consist of three individual and complementary projects: the Dark Energy Camera Legacy Survey (DECaLS; Proposal ID #2014B-0404; PIs: David Schlegel and Arjun Dey), the Beijing-Arizona Sky Survey (BASS; NOAO Prop. ID #2015A-0801; PIs: Zhou Xu and Xiaohui Fan), and the Mayall z-band Legacy Survey (MzLS; Prop. ID #2016A-0453; PI: Arjun Dey). DECaLS, BASS, and MzLS together include data obtained, respectively, at the Blanco telescope, Cerro Tololo Inter-American Observatory, NSF's NOIRLab; the Bok telescope, Steward Observatory, University of Arizona; and the Mayall telescope, Kitt Peak National Observatory, NOIRLab. The Legacy Surveys project is honored to be permitted to conduct astronomical research on Iolkam Du'ag (Kitt Peak), a mountain with particular significance to the Tohono O'odham Nation. This project used data obtained with the Dark Energy Camera (DECam), which was constructed by the Dark Energy Survey (DES) collaboration. Funding for the DES Projects has been provided by the U.S. Department of Energy, the U.S. National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for England, the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Physics at the University of Chicago, Center for Cosmology and Astro-Particle Physics at The Ohio State University, the Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos e Projetos, Fundacao Carlos Chagas Filho de Amparo, Financiadora de Estudos e Projetos, Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Cientifico e Tecnologico and the Ministerio da Ciencia, Tecnologia e Inovacao, the Deutsche Forschungsgemeinschaft and the Collaborating Institutions in the Dark Energy Survey. The Collaborating Institutions are Argonne National Laboratory, the University of California at Santa Cruz, the University of Cambridge, Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas-Madrid, the University of Chicago, University College London, the DES-Brazil Consortium, the University of Edinburgh, the Eidgenossische Technische Hochschule (ETH) Zurich, Fermi National Accelerator Laboratory, the University of Illinois at UrbanaChampaign, the Institut de Ciencies de l'Espai (IEEC/CSIC), the Institut de Fisica d'Altes Energies, Lawrence Berkeley National Laboratory, the Ludwig Maximilians Universitat Munchen and the associated Excellence Cluster Universe, the University of Michigan, NSF's NOIRLab, the University of Nottingham, The Ohio State University, the University of Pennsylvania, the University of Portsmouth, SLAC National Accelerator Laboratory, Stanford University, the University of Sussex, and Texas A&M University. The Legacy Survey team makes use of data products from the Near-Earth Object Wide-field Infrared Survey Explorer (NEOWISE), which is a project of the Jet Propulsion Laboratory/California Institute of Technology. NEOWISE is funded by the National Aeronautics and Space Administration. The Legacy Surveys imaging of the DESI footprint is supported by the Director, Office of Science, Office of High Energy Physics of the U.S. Department of Energy under contract No. DE-AC02-05CH1123; by the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility under the same contract; and by the U.S. National Science Foundation, Division of Astronomical Sciences under contract No. AST-0950945 to NOAO. This publication makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation. This research has made use of the NASA/IPAC Infrared Science Archive, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. Some of the data presented in this paper were obtained from the Mikulski Archive for Space Telescopes (MAST). STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. Support for MAST for non-HST data is provided by the NASA Office of Space Science via grant NNX09AF08G and by other grants and contracts.We analyze 143 Type Ia supernovae (SNe Ia) observed in H band (1.6-1.8 mu m) and find that SNe Ia are intrinsically brighter in H band with increasing host galaxy stellar mass. We find that SNe Ia in galaxies more massive than 10(10)(.4)(3) M-circle dot are 0.13 +/- 0.04 mag brighter in H than SNe Ia in less massive galaxies. The same set of SNe Ia observed at optical wavelengths, after width-color-luminosity corrections, exhibit a 0.10 +/- 0.03 mag offset in the Hubble residuals. We observe an outlier population (vertical bar Delta H-max vertical bar > 0.5 mag) in the H band and show that removing the outlier population moves the mass threshold to 10(10.65) M-circle dot and reduces the step in H band to 0.08 +/- 0.04 mag, but the equivalent optical mass step is increased to 0.13 +/- 0.04 mag. We conclude that the outliers do not drive the brightness-host-mass correlation. Less massive galaxies preferentially host more higher-stretch SNe Ia, which are intrinsically brighter and bluer. It is only after correction for width-luminosity and color- luminosity relationships that SNe Ia have brighter optical Hubble residuals in more massive galaxies. Thus, finding that SNe Ia are intrinsically brighter in H in more massive galaxies is an opposite correlation to the intrinsic (prewidth-luminosity correction) optical brightness. If dust and the treatment of intrinsic color variation were the main driver of the host galaxy mass correlation, we would not expect a correlation of brighter H-band SNe Ia in more massive galaxies.National Science Foundation (NSF) AST-1311862PITT PACCBerkeley Center for Cosmological PhysicsUnited States Department of Energy (DOE) DE-AC02-05CH11231 DE-AC02-05CH1123 DE-AC02-76SF00515European Commission 839090National Aeronautics & Space Administration (NASA)Alfred P. Sloan FoundationUnited States Department of Energy (DOE)Participating InstitutionsCenter for High-Performance Computing at the University of UtahSDSS Collaboration, including the Brazilian Participation GroupCarnegie Institution for Science, Carnegie Mellon UniversityChilean Participation GroupFrench Participation GroupSmithsonian InstitutionHarvard-Smithsonian Center for AstrophysicsInstituto de Astrofisica de CanariasJohns Hopkins UniversityKavli Institute for the Physics and Mathematics of the Universe (IPMU)/University of TokyoUnited States Department of Energy (DOE)Leibniz Institut fur Astrophysik Potsdam (AIP)Max-Planck-Institut fur Astronomie (MPIA Heidelberg) Max-Planck-Institut fur Astrophysik (MPA Garching) Max-Planck-Institut fur Extraterrestrische Physik (MPE)National Astronomical Observatories of ChinaNew Mexico State UniversityNew York UniversityUniversity of Notre DameObservatario Nacional/MCTIOhio State UniversityPennsylvania State UniversityShanghai Astronomical ObservatoryUnited Kingdom Participation GroupUniversidad Nacional Autonoma de MexicoUniversity of ArizonaUniversity of Colorado BoulderUniversity of OxfordUniversity of PortsmouthUniversity of UtahUniversity of VirginiaUniversity of WashingtonUniversity of WisconsinVanderbilt UniversityYale UniversityUnited States Department of Energy (DOE)National Science Foundation (NSF)Spanish GovernmentUK Research & Innovation (UKRI)Science & Technology Facilities Council (STFC)UK Research & Innovation (UKRI)Higher Education Funding Council for EnglandNational Center for Supercomputing Applications at the University of Illinois at Urbana-ChampaignKavli Institute of Cosmological Physics at the University of ChicagoOhio State UniversityMitchell Institute for Fundamental Physics and Astronomy at Texas AM UniversityFinanciadora de Inovacao e Pesquisa (Finep)Fundacao Carlos Chagas Filho de Amparo Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio De Janeiro (FAPERJ)Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPQ)Spanish GovernmentGerman Research Foundation (DFG)Collaborating Institutions in the Dark Energy SurveyNational Energy Research Scientific Computing CenterUnited States Department of Energy (DOE)National Science Foundation (NSF) NSF - Directorate for Mathematical & Physical Sciences (MPS) AST-0950945Association of Universities for Research in Astronomy, Inc., under NASA NAS5-26555 National Aeronautics & Space Administration (NASA) NNX09AF08

    Human Telomere Length Correlates to the Size of the Associated Chromosome Arm

    Get PDF
    The majority of human telomere length studies have focused on the overall length of telomeres within a cell. In fact, very few studies have examined telomere length for individual chromosome arms. The objective of this study was to examine the relationship between chromosome arm size and the relative length of the associated telomere. Quantitative Fluorescence In Situ Hybridization (Q-FISH) was used to measure the relative telomere length of each chromosome arm in metaphases from cultured lymphocytes of 17 individuals. A statistically significant positive correlation (r = 0.6) was found between telomere length and the size of the associated chromosome arm, which was estimated based on megabase pair measurements from http://www.ncbi.nlm.nih.gov/projects/mapview/

    Cryptic Subtelomeric Rearrangements and X Chromosome Mosaicism: A Study of 565 Apparently Normal Individuals with Fluorescent In Situ Hybridization

    Get PDF
    Five percent of patients with unexplained mental retardation have been attributed to cryptic unbalanced subtelomeric rearrangements. Half of these affected individuals have inherited the rearrangement from a parent who is a carrier for a balanced translocation. However, the frequency of carriers for cryptic balanced translocations is unknown. To determine this frequency, 565 phenotypically normal unrelated individuals were examined for balanced subtelomeric rearrangements using Fluorescent In Situ hybridization (FISH) probes for all subtelomere regions. While no balanced subtelomeric rearrangements were identified, three females in this study were determined to be mosaic for the X chromosome. Mosaicism for XXX cell lines were observed in the lymphocyte cultures of 3 in 379 women (0.8%), which is a higher frequency than the 1 in 1000 (0.1%) reported for sex chromosome aneuploidies. Our findings suggest that numerical abnormalities of the X chromosome are more common in females than previously reported. Based on a review of the literature, the incidence of cryptic translocation carriers is estimated to be approximately 1/8,000, more than ten-fold higher than the frequency of visible reciprocal translocations

    Reconstructing Climate Policy: How Best to Engage China and Other Developing Countries?

    Get PDF
    Duke University organized the International Conference on Reconstructing Climate Policy: Moving Beyond the Kyoto Impasse, May 2003. The organizer invited me to specifically address the following two issues at the conference: 1) Whether is the proposal for joint accession by the U.S. and China in the interest of China?, and 2) Even if participating a global cap-and-trade regime is so beneficial to China as many economic studies suggest, why has China consistently refused in international negotiations even to discuss its participation in it?. In this paper, we look at the first issue from the following perspectives: a) how does China value importance of maintaining unity of the Group of 77?; b) what lessons has China learned from bilateral negotiations with the U.S. to work out the terms for China to get accession to the WTO?; c) what is the legitimacy of the U.S. insistence that it re-joins the Kyoto Protocol only if major developing countries join?; d) what are implications of the U.S. strikingly reversed position on the commitments of developing countries in New Delhi for initiating discussions on joint accession by the U.S. and China?; and e) how would joint accession by the U.S. and China be perceived?. We then address the second issue from the following perspectives: a) from the point of view of fairness, how do developing countries including China and India perceive emissions caps in the first place?; b) why have China and India been sceptical to international emissions trading?; c) how is an inflow of CDM investment in China perceived politically in comparison with the exports of emissions permits to the U.S.?; d) what are the implications of “lock in” to emissions cap, in particular no rules and principles for setting emissions targets for the commitment periods subsequent to Kyoto?; e) how to address the complex undertaking of setting emissions caps for developing countries, which must be linked to future, unobserved levels in comparison with the historically observed levels for industrialized countries?. Finally, the paper touches on the likely path forward

    The Pittsburgh Sloan Digital Sky Survey MgII Quasar Absorption-Line Survey Catalog

    Full text link
    We present a catalog of intervening MgII quasar absorption-line systems in the redshift interval 0.36 <= z <= 2.28. The catalog was built from Sloan Digital Sky Survey Data Release Four (SDSS DR4) quasar spectra. Currently, the catalog contains > 17,000 measured MgII doublets. We also present data on the ~44,600 quasar spectra which were searched to construct the catalog, including redshift and magnitude information, continuum-normalized spectra, and corresponding arrays of redshift-dependent minimum rest equivalent widths detectable at our confidence threshold. The catalog is available on the web. A careful second search of 500 random spectra indicated that, for every 100 spectra searched, approximately one significant MgII system was accidentally rejected. Current plans to expand the catalog beyond DR4 quasars are discussed. Many MgII absorbers are known to be associated with galaxies. Therefore, the combination of large size and well understood statistics makes this catalog ideal for precision studies of the low-ionization and neutral gas regions associated with galaxies at low to moderate redshift. An analysis of the statistics of MgII absorbers using this catalog will be presented in a subsequent paper.Comment: AJ, in pres
    • …
    corecore