86 research outputs found

    Analysis of chloroplast genomes and a supermatrix inform reclassification of the Rhodomelaceae (Rhodophyta).

    Get PDF
    With over a thousand species, the Rhodomelaceae is the most species-rich family of red algae. While its genera have been assigned to 14 tribes, the high-level classification of the family has never been evaluated with a molecular phylogeny. Here, we reassess its classification by integrating genome-scale phylogenetic analysis with observations of the morphological characters of clades. In order to resolve relationships among the main lineages of the family we constructed a phylogeny with 55 chloroplast genomes (52 newly determined). The majority of branches were resolved with full bootstrap support. We then added 266 rbcL, 125 18S rRNA gene and 143 cox1 sequences to construct a comprehensive phylogeny containing nearly half of all known species in the family (407 species in 89 genera). These analyses suggest the same subdivision into higher-level lineages, but included many branches with moderate or poor support. The circumscription for nine of the 13 previously described tribes was supported, but the Lophothalieae, Polysiphonieae, Pterosiphonieae and Herposiphonieae required revision, and five new tribes and one resurrected tribe were segregated from them. Rhizoid anatomy is highlighted as a key diagnostic character for the morphological delineation of several lineages. This work provides the most extensive phylogenetic analysis of the Rhodomelaceae to date and successfully resolves the relationships among major clades of the family. Our data show that organellar genomes obtained through high-throughput sequencing produce well-resolved phylogenies of difficult groups, and their more general application in algal systematics will likely permit deciphering questions about classification at many taxonomic levels

    Analysis of chloroplast genomes and a supermatrix inform reclassification of the Rhodomelaceae (Rhodophyta).

    Get PDF
    With over a thousand species, the Rhodomelaceae is the most species-rich family of red algae. While its genera have been assigned to 14 tribes, the high-level classification of the family has never been evaluated with a molecular phylogeny. Here, we reassess its classification by integrating genome-scale phylogenetic analysis with observations of the morphological characters of clades. In order to resolve relationships among the main lineages of the family we constructed a phylogeny with 55 chloroplast genomes (52 newly determined). The majority of branches were resolved with full bootstrap support. We then added 266 rbcL, 125 18S rRNA gene and 143 cox1 sequences to construct a comprehensive phylogeny containing nearly half of all known species in the family (407 species in 89 genera). These analyses suggest the same subdivision into higher-level lineages, but included many branches with moderate or poor support. The circumscription for nine of the 13 previously described tribes was supported, but the Lophothalieae, Polysiphonieae, Pterosiphonieae and Herposiphonieae required revision, and five new tribes and one resurrected tribe were segregated from them. Rhizoid anatomy is highlighted as a key diagnostic character for the morphological delineation of several lineages. This work provides the most extensive phylogenetic analysis of the Rhodomelaceae to date and successfully resolves the relationships among major clades of the family. Our data show that organellar genomes obtained through high-throughput sequencing produce well-resolved phylogenies of difficult groups, and their more general application in algal systematics will likely permit deciphering questions about classification at many taxonomic levels

    A reassessment of the Hypoglossum group (Delesseriaceae, Rhodophyta), with a critique of its genera

    Full text link
    A reassessment of the Hypoglossum group (Delesseriaceae, Rhodophyta), with a critique of its genera. Eight genera are assigned to the Hypoglossum KĂŒtzing, Phitymophora J. Agardh, Pseudobranchioglossum Bodard, and Zellera Martens. The circumscription of the group is emended to include forms with network-forming ( Zellera ) an dspirally twisted ( Duckerella ) thalli. The definition of the group is lalso modified to include members (e.g. some species of Hypoglossum ) in which tetrasporangia are produced by primary cells as in the Caloglossa group. Exogenous branching, a distinguishing feature of the closely related Caloglossa group, never occurs in the Hypoglossum group.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47938/1/10152_2006_Article_BF02365624.pd

    International Consensus Statement on Rhinology and Allergy: Rhinosinusitis

    Get PDF
    Background: The 5 years since the publication of the first International Consensus Statement on Allergy and Rhinology: Rhinosinusitis (ICAR‐RS) has witnessed foundational progress in our understanding and treatment of rhinologic disease. These advances are reflected within the more than 40 new topics covered within the ICAR‐RS‐2021 as well as updates to the original 140 topics. This executive summary consolidates the evidence‐based findings of the document. Methods: ICAR‐RS presents over 180 topics in the forms of evidence‐based reviews with recommendations (EBRRs), evidence‐based reviews, and literature reviews. The highest grade structured recommendations of the EBRR sections are summarized in this executive summary. Results: ICAR‐RS‐2021 covers 22 topics regarding the medical management of RS, which are grade A/B and are presented in the executive summary. Additionally, 4 topics regarding the surgical management of RS are grade A/B and are presented in the executive summary. Finally, a comprehensive evidence‐based management algorithm is provided. Conclusion: This ICAR‐RS‐2021 executive summary provides a compilation of the evidence‐based recommendations for medical and surgical treatment of the most common forms of RS

    BRYOBESIA JOHANNAE, A SMALL TROPICAL REPRESENTATIVE OF THE ORDER CLADOPHORALES (CHLOROPHYCEAE)1

    No full text
    The small and ill-known tropical chlorophyte, Brybesia johannae Weber-van Bosse, is redescribed on the basis of living material from the coral reef of Curacao, Netherlands Antilles. Additional records are given from the Canary Islands. One species, B. johannae, is recognized (including, B. cylindrocarpa Howe 1920), and this probably has a wide Atlantic and Indo-Pacific tropical distribution. Bryobesia is not related to Bryopsis and Derbesia (Caulerpales), but belongs to the Cladophorales. It appears to be a rudimentary Cladophora

    Liste des algues du Siboga,

    No full text
    • 

    corecore