380 research outputs found

    Absence of evidence for the conservation outcomes of systematic conservation planning around the globe : A systematic map

    Get PDF
    Background Systematic conservation planning is a discipline concerned with the prioritisation of resources for biodiversity conservation and is often used in the design or assessment of terrestrial and marine protected area networks. Despite being an evidence-based discipline, to date there has been no comprehensive review of the outcomes of systematic conservation plans and assessments of the relative effectiveness of applications in different contexts. To address this fundamental gap in knowledge, our primary research question was: what is the extent, distribution and robustness of evidence on conservation outcomes of systematic conservation planning around the globe? Methods A systematic mapping exercise was undertaken using standardised search terms across 29 sources, including publication databases, online repositories and a wide range of grey literature sources. The review team screened articles recursively, first by title only, then abstract and finally by full-text, using inclusion criteria related to systematic conservation plans conducted at sub-global scales and reported on since 1983. We sought studies that reported outcomes relating to natural, human, social, financial or institutional outcomes and which employed robust evaluation study designs. The following information was extracted from included studies: bibliographic details, background information including location of study and broad objectives of the plan, study design, reported outcomes and context. Results Of the approximately 10,000 unique articles returned through our searches, 1209 were included for full-text screening and 43 studies reported outcomes of conservation planning interventions. However, only three studies involved the use of evaluation study designs which are suitably rigorous for inclusion, according to best-practice guidelines. The three included studies were undertaken in the Gulf of California (Mexico), Réunion Island, and The Nature Conservancy’s landholdings across the USA. The studies varied widely in context, purpose and outcomes. Study designs were non-experimental or qualitative, and involved use of spatial landholdings over time, stakeholder surveys and modelling of alternative planning scenarios. Conclusion Rigorous evaluations of systematic conservation plans are currently not published in academic journals or made publicly available elsewhere. Despite frequent claims relating to positive implications and outcomes of these planning activities, we show that evaluations are probably rarely conducted. This finding does not imply systematic conservation planning is not effective but highlights a significant gap in our understanding of how, when and why it may or may not be effective. Our results also corroborate claims that the literature on systematic conservation planning is dominated by methodological studies, rather than those that focus on implementation and outcomes, and support the case that this is a problematic imbalance in the literature. We emphasise the need for academics and practitioners to publish the outcomes of systematic conservation planning exercises and to consider employing robust evaluation methodologies when reporting project outcomes. Adequate reporting of outcomes will in turn enable transparency and accountability between institutions and funding bodies as well as improving the science and practice of conservation planning

    Protecting Important Sites for Biodiversity Contributes to Meeting Global Conservation Targets

    Get PDF
    Protected areas (PAs) are a cornerstone of conservation efforts and now cover nearly 13% of the world's land surface, with the world's governments committed to expand this to 17%. However, as biodiversity continues to decline, the effectiveness of PAs in reducing the extinction risk of species remains largely untested. We analyzed PA coverage and trends in species' extinction risk at globally significant sites for conserving birds (10,993 Important Bird Areas, IBAs) and highly threatened vertebrates and conifers (588 Alliance for Zero Extinction sites, AZEs) (referred to collectively hereafter as ‘important sites’). Species occurring in important sites with greater PA coverage experienced smaller increases in extinction risk over recent decades: the increase was half as large for bird species with>50% of the IBAs at which they occur completely covered by PAs, and a third lower for birds, mammals and amphibians restricted to protected AZEs (compared with unprotected or partially protected sites). Globally, half of the important sites for biodiversity conservation remain unprotected (49% of IBAs, 51% of AZEs). While PA coverage of important sites has increased over time, the proportion of PA area covering important sites, as opposed to less important land, has declined (by 0.45–1.14% annually since 1950 for IBAs and 0.79–1.49% annually for AZEs). Thus, while appropriately located PAs may slow the rate at which species are driven towards extinction, recent PA network expansion has under-represented important sites. We conclude that better targeted expansion of PA networks would help to improve biodiversity trends

    Assessing the Effectiveness of Tradable Landuse Rights for Biodiversity Conservation: An Application to Canada's Boreal Mixedwood Forest

    Full text link

    The Effects of Governmental Protected Areas and Social Initiatives for Land Protection on the Conservation of Mexican Amphibians

    Get PDF
    Traditionally, biodiversity conservation gap analyses have been focused on governmental protected areas (PAs). However, an increasing number of social initiatives in conservation (SICs) are promoting a new perspective for analysis. SICs include all of the efforts that society implements to conserve biodiversity, such as land protection, from private reserves to community zoning plans some of which have generated community-protected areas. This is the first attempt to analyze the status of conservation in Latin America when some of these social initiatives are included. The analyses were focused on amphibians because they are one of the most threatened groups worldwide. Mexico is not an exception, where more than 60% of its amphibians are endemic. We used a niche model approach to map the potential and real geographical distribution (extracting the transformed areas) of the endemic amphibians. Based on remnant distribution, all the species have suffered some degree of loss, but 36 species have lost more than 50% of their potential distribution. For 50 micro-endemic species we could not model their potential distribution range due to the small number of records per species, therefore the analyses were performed using these records directly. We then evaluated the efficiency of the existing set of governmental protected areas and established the contribution of social initiatives (private and community) for land protection for amphibian conservation. We found that most of the species have some proportion of their potential ecological niche distribution protected, but 20% are not protected at all within governmental PAs. 73% of endemic and 26% of micro-endemic amphibians are represented within SICs. However, 30 micro-endemic species are not represented within either governmental PAs or SICs. This study shows how the role of land conservation through social initiatives is therefore becoming a crucial element for an important number of species not protected by governmental PAs

    Tracking a Medically Important Spider: Climate Change, Ecological Niche Modeling, and the Brown Recluse (Loxosceles reclusa)

    Get PDF
    Most spiders use venom to paralyze their prey and are commonly feared for their potential to cause injury to humans. In North America, one species in particular, Loxosceles reclusa (brown recluse spider, Sicariidae), causes the majority of necrotic wounds induced by the Araneae. However, its distributional limitations are poorly understood and, as a result, medical professionals routinely misdiagnose brown recluse bites outside endemic areas, confusing putative spider bites for other serious conditions. To address the issue of brown recluse distribution, we employ ecological niche modeling to investigate the present and future distributional potential of this species. We delineate range boundaries and demonstrate that under future climate change scenarios, the spider's distribution may expand northward, invading previously unaffected regions of the USA. At present, the spider's range is centered in the USA, from Kansas east to Kentucky and from southern Iowa south to Louisiana. Newly influenced areas may include parts of Nebraska, Minnesota, Wisconsin, Michigan, South Dakota, Ohio, and Pennsylvania. These results illustrate a potential negative consequence of climate change on humans and will aid medical professionals in proper bite identification/treatment, potentially reducing bite misdiagnoses

    Systematic Conservation Planning in the Face of Climate Change: Bet-Hedging on the Columbia Plateau

    Get PDF
    Systematic conservation planning efforts typically focus on protecting current patterns of biodiversity. Climate change is poised to shift species distributions, reshuffle communities, and alter ecosystem functioning. In such a dynamic environment, lands selected to protect today's biodiversity may fail to do so in the future. One proposed approach to designing reserve networks that are robust to climate change involves protecting the diversity of abiotic conditions that in part determine species distributions and ecological processes. A set of abiotically diverse areas will likely support a diversity of ecological systems both today and into the future, although those two sets of systems might be dramatically different. Here, we demonstrate a conservation planning approach based on representing unique combinations of abiotic factors. We prioritize sites that represent the diversity of soils, topographies, and current climates of the Columbia Plateau. We then compare these sites to sites prioritized to protect current biodiversity. This comparison highlights places that are important for protecting both today's biodiversity and the diversity of abiotic factors that will likely determine biodiversity patterns in the future. It also highlights places where a reserve network designed solely to protect today's biodiversity would fail to capture the diversity of abiotic conditions and where such a network could be augmented to be more robust to climate-change impacts
    corecore