1,336 research outputs found

    Vibrational States of Glassy and Crystalline Orthotherphenyl

    Full text link
    Low-frequency vibrations of glassy and crystalline orthoterphenyl are studied by means of neutron scattering. Phonon dispersions are measured along the main axes of a single crystal, and the corresponding longitudinal and transversal sound velocities are obtained. For glassy and polycrystalline samples, a density of vibrational states is determined and cross-checked against other dynamic observables. In the crystal, low-lying zone-boundary modes lead to an excess over the Debye density of states. In the glass, the boson peak is located at even lower frequencies. With increasing temperature, both glass and crystal show anharmonicity.Comment: 7 pages of LaTeX (svjour), 2 tables, 10 figures accepted in Eur. Phys. J.

    Magnetic microstructure of nanostructured Fe, studied by small angle neutron scattering

    Get PDF
    Small angle neutron scattering (SANS) was applied to achieve insight into the magnetic correlations in nanostructured Fe. The results confirm the expected microstructure involving ferromagnetic grains and a nonmagnetic or weakly magnetic interface region, the interfaces occupying about half the specimen volume. The SANS measurements further reveal that in nanostructured Fe the magnetic correlations are not confined to single grains, but are extended across the interfaces and result in the alignment of the magnetization over several hundreds of grains. An external field of 1.5 kOe is not sufficient for complete magnetic alignment of the entire specimen. However, the long-range magnetic correlations are considerably disturbed by this field. Reducing the external magnetic field to zero causes the magnetic correlations to resume microstructural characteristics similar to what they had in the original stat

    Sintering characteristics of nanocrystalline TiO2—A study combining small angle neutron scattering and nitrogen absorption-BET

    Get PDF
    Small angle neutron scattering (SANS) was employed to characterize the pore structure of nanophase TiO2 ceramic materials compacted at different temperatures. Nanophase samples, produced by inert gas condensation, were compacted at 25, 290, 413, and 550 °C using a pressure of 1 GPa. The pore size distribution of the sample compacted at room temperature was very broad, with sizes ranging from 3-30 nm and pores comprising 38% of the sample volume. Compaction at 290 and 413 °C reduced the pore volume to 25% and 20%, respectively, by eliminating pores at both the small and large ends of the distribution. Compaction at 550 °C resulted in a pore volume that was less than 8%. Complications in the SANS analysis arising from the scattering from grain boundaries are discussed. The results from SANS are compared with those derived from nitrogen absorption, BET, measurement

    Harmonic behavior of metallic glasses up to the metastable melt

    Get PDF
    In two amorphous alloys ZrTiCuNiBe and ZrAlNiCu coherent neutron scattering has been measured over five decades in energy, including measurements in the metastable melt of a metallic alloy more than 80 K above Tg. In the vibrational spectra a pronounced "boson" peak is found: Even in crystallized samples the density of states exceeds the Debye ω2 model, and in the amorphous state low-frequency vibrations are further enhanced. The peak position shows no dispersion in q, while intensities are strongly correlated with the static structure factor. Over the full energy range the temperature dependence is strictly harmonic. From high-energy resolution measurements we establish lower bounds for the temperatures at which structural α and fast β relaxation become observable

    Annealing tests of in-pile irradiated oxide coated U–Mo/Al–Si dispersed nuclear fuel

    Get PDF
    Authors do acknowledge the MERARG team for their experimental work (CEA) and F. Charollais, J. Noirot and finally B. Kapusta for their advices and comments. This study was supported by a combined Grant (FRM0911) of the Bundesministerium für Bildung und Forschung (BMBF) and the Bayerisches Staatsministerium für Wissenschaft, Forschung und Kunst (StMWFK).U–Mo/Al based nuclear fuels have been worldwide considered as a promising high density fuel for the conversion of high flux research reactors from highly enriched uranium to lower enrichment. In this paper, we present the annealing test up to 1800°C of in-pile irradiated U–Mo/Al–Si fuel plate samples. More than 70% of the fission gases (FGs) are released during two major FG release peaks around 500°C and 670°C. Additional characterisations of the samples by XRD, EPMA and SEM suggest that up to 500°C FGs are released from IDL/matrix interfaces. The second peak at 670°C representing the main release of FGs originates from the interaction between U–Mo and matrix in the vicinity of the cladding

    Economic Feasibility of Utilizing Waste-Water Heat from Coal-Fired Electrical Generating Plants in Commercial Greenhouses in North Dakota

    Get PDF
    This study provides information on the economic feasibility of establishing commercial greenhouses utilizing waste-water heat in North Dakota.Production Economics, Resource /Energy Economics and Policy,

    High-Pressure Specific-Heat Spectroscopy At The Glass-Transition In O-Terphenyl

    Get PDF
    Measurements of the enthalpy relaxations in liquid orthoterphenyl in the supercooled state have been carried out using specific-heat spectroscopy over the frequency range from 2 Hz to 6.3 kHz, as a function of temperature and as a function of pressure. The observed α-relaxation peaks in the phase of the complex specific heat show increasing relaxation times τ with increasing pressure at constant temperature, similar to the divergence of τ when the calorimetric glass temperature Tg is approached by lowering the temperature at constant pressure. The temperature and pressure dependence of the measured mean relaxation times τ¯ near Tg are in remarkable agreement with those found by other spectroscopic methods and have been compared with an extended Vogel-Fulcher-Tammann law. However, we find different scaling when the glass transition is approached by cooling or by increasing pressure. This suggests that the assumption of a simple volume-activated process is not adequate

    Bound q2qˉ2q^2\bar q^2 states in a constituent quark model

    Full text link
    We consider the existence of bound systems consisting of two quarks and two antiquarks (q2qˉ2q^2\bar q^2) within the framework of a constituent quark model. The underlying quark dynamics is described by a linear confinement potential and an effective q2qˉ2q^2\bar q^2 interaction which has its origin in instanton effects of QCD. We calculate the spectra and examine the internal structure of the states found.Comment: 11 pages, needs epsf.st

    The new small-angle neutron scattering instrument SANS-1 at MLZ—characterization and first results

    Get PDF
    AbstractA thorough characterization of the key features of the new small-angle neutron scattering instrument SANS-1 at MLZ, a joint project of Technische Universität München and Helmholtz Zentrum Geesthacht, is presented. Measurements of the neutron beam profile, divergency and flux are given for various positions along the instrument including the sample position, and agree well with Monte Carlo simulations of SANS-1 using the program McStas. Secondly, the polarization option of SANS-1 is characterized for a broad wavelength band. A key feature of SANS-1 is the large accessible Q-range facilitated by the sideways movement of the detector. Particular attention is hence paid to the effects that arise due to large scattering angles on the detector where a standard cos3 solid angle correction is no longer applicable. Finally the performance of the instrument is characterized by a set of standard samples

    Evidence for Intergalactic Absorption in the TeV Gamma-Ray Spectrum of Mkn 501

    Full text link
    The recent HEGRA observations of the blazar Mkn 501 show strong curvature in the very high energy gamma-ray spectrum. Applying the gamma-ray opacity derived from an empirically based model of the intergalactic infrared background radiation field (IIRF), to these observations, we find that the intrinsic spectrum of this source is consistent with a power-law: dN/dE~ E^-alpha with alpha=2.00 +/- 0.03 over the range 500 GeV - 20 TeV. Within current synchrotron self-Compton scenarios, the fact that the TeV spectral energy distribution of Mkn 501 does not vary with luminosity, combined with the correlated, spectrally variable emission in X-rays, as observed by the BeppoSAX and RXTE instruments, also independently implies that the intrinsic spectrum must be close to alpha=2. Thus, the observed curvature in the spectrum is most easily understood as resulting from intergalactic absorption.Comment: 7 pages, 1 figure, accepted in ApJ Letters 1999 April
    • …
    corecore