30 research outputs found

    Production and decays of supersymmetric Higgs bosons in spontaneously broken R-parity

    Get PDF
    We study the mass spectra, production and decay properties of the lightest supersymmetric CP-even and CP-odd Higgs bosons in models with spontaneously broken R-parity (SBRP). We compare the resulting mass spectra with expectations of the Minimal Supersymmetric Standard Model (MSSM), stressing that the model obeys the upper bound on the lightest CP-even Higgs boson mass. We discuss how the presence of the additional scalar singlet states affects the Higgs production cross sections, both for the Bjorken process and the "associated production". The main phenomenological novelty with respect to the MSSM comes from the fact that the spontaneous breaking of lepton number leads to the existence of the majoron, denoted J, which opens new decay channels for supersymmetric Higgs bosons. We find that the invisible decays of CP-even Higgses can be dominant, while those of the CP-odd bosons may also be sizeable.Comment: 21 pages, 8 figures; minor changes, final version for publicatio

    Degenerate neutrinos from a supersymmetric A_4 model

    Full text link
    We investigate the supersymmetric A_4 model recently proposed by Babu, Ma and Valle. The model naturally gives quasi-degenerate neutrinos that are bi-largely mixed, in agreement with observations. Furthermore, the mixings in the quark sector are constrained to be small, making it a complete model of the flavor structure. Moreover, it has the interesting property that CP-violation in the leptonic sector is maximal (unless vanishing). The model exhibit a close relation between the slepton and lepton sectors and we derive the slepton spectra that are compatible with neutrino data and the present bounds on flavor-violating charged lepton decays. The prediction for the branching ratio of the decay tau -> mu gamma has a lower limit of 10^{-9}. In addition, the overall neutrino mass scale is constrained to be larger than 0.3 eV. Thus, the model will be tested in the very near future.Comment: 11 pages, 6 figures. Talk given at the International Workshop on Astroparticle and High Energy Physics (AHEP), Valencia, Spain, 14-18 Oct. 200

    Minimal supergravity radiative effects on the tri-bimaximal neutrino mixing pattern

    Get PDF
    We study the stability of the Harrison-Perkins-Scott (HPS) mixing pattern, assumed to hold at some high energy scale, against supersymmetric radiative corrections. We work in the framework of a reference minimal supergravity model (mSUGRA) where supersymmetry breaking is universal and flavor-blind at unification. The radiative corrections considered include both RGE running as well as threshold effects. We find that in this case the solar mixing angle can only increase with respect to the HPS reference value, while the atmospheric and reactor mixing angles remain essentially stable. Deviations from the solar angle HPS prediction towards lower values would signal novel contributions from physics beyond the simplest mSUGRA model.Comment: 13 pages, 3 figures; added reference; final version for publicatio

    Predicting Neutrinoless Double Beta Decay

    Get PDF
    We give predictions for the neutrinoless double beta decay rate in a simple variant of the A_4 family symmetry model. We show that there is a lower bound for the neutrinoless double beta decay amplitude even in the case of normal hierarchical neutrino masses, corresponding to an effective mass parameter |m_{ee}| >= 0.17 \sqrt{\Delta m^2_{ATM}}. This result holds both for the CP conserving and CP violating cases. In the latter case we show explicitly that the lower bound on |m_{ee}| is sensitive to the value of the Majorana phase. We conclude therefore that in our scheme, neutrinoless double beta decay may be accessible to the next generation of high sensitivity experiments.Comment: 4 pages, 5 figures, 1 tabl

    Invisible Higgs Boson Decays in Spontaneously Broken R-Parity

    Get PDF
    The Higgs boson may decay mainly to an invisible mode characterized by missing energy, instead of the Standard Model channels. This is a generic feature of many models where neutrino masses arise from the spontaneous breaking of ungauged lepton number at relatively low scales, such as spontaneously broken R-parity models. Taking these models as framework, we reanalyze this striking suggestion in view of the recent data on neutrino oscillations that indicate non-zero neutrino masses. We show that, despite the smallness of neutrino masses, the Higgs boson can decay mainly to the invisible Goldstone boson associated to the spontaneous breaking of lepton number. This requires a gauge singlet superfield coupling to the electroweak doublet Higgses, as in the Next to Minimal Supersymmetric Standard Model (NMSSM) scenario for solving the ÎĽ\mu-problem. The search for invisibly decaying Higgs bosons should be taken into account in the planning of future accelerators, such as the Large Hadron Collider and the Next Linear Collider.Comment: 24 pages, 10 figures; typos corrected, published versio

    Lepton flavour violating stau decays versus seesaw parameters: correlations and expected number of events for both seesaw type-I and II

    Full text link
    In minimal supergravity (mSugra), the neutrino sector is related to the slepton sector by means of the renormalization group equations. This opens a door to indirectly test the neutrino sector via measurements at the LHC. Concretely, for the simplest seesaw type-I, we present the correlations between seesaw parameters and ratio of stau lepton flavour violating (LFV) branching ratios. We find some simple, extreme scenarios for the unknown right-handed parameters, where ratios of LFV rates correlate with neutrino oscillation parameters. On the other hand, we scan the mSugra parameter space, for both seesaw type-I and II, to find regions where LFV stau decays can be maximized, while respecting low-energy experimental bounds. We estimate the expected number of events at the LHC for a sample luminosity of L = 100 fb^{-1}.Comment: 10 pages, 6 figures, 1 table, to appear in the proceedings of DISCRETE'08 Symposium on Prospects in the Physics of Discrete Symmetries, 11-16 December 2008, Valencia, Spain; some comments adde

    Probing minimal supergravity in the type-I seesaw mechanism with lepton flavour violation at the CERN LHC

    Get PDF
    The most general supersymmetric seesaw mechanism has too many parameters to be predictive and thus can not be excluded by any measurements of lepton flavour violating (LFV) processes. We focus on the simplest version of the type-I seesaw mechanism assuming minimal supergravity boundary conditions. We compute branching ratios for the LFV scalar tau decays, τ~2→(e,μ)+χ10{\tilde \tau}_2 \to (e,\mu) + \chi^0_1, as well as loop-induced LFV decays at low energy, such as li→lj+γl_i \to l_j + \gamma and li→3ljl_i \to 3 l_j, exploring their sensitivity to the unknown seesaw parameters. We find some simple, extreme scenarios for the unknown right-handed parameters, where ratios of LFV branching ratios correlate with neutrino oscillation parameters. If the overall mass scale of the left neutrinos and the value of the reactor angle were known, the study of LFV allows, in principle, to extract information about the so far unknown right-handed neutrino parameters.Comment: 29 pages, 27 figures; added explanatory comments, corrected typos, final version for publicatio

    Flavour violation at the LHC: type-I versus type-II seesaw in minimal supergravity

    Get PDF
    We reconsider the role that the possible detection of lepton flavour violating (LFV) decays of supersymmetric particles at the Large Hadron Collider (LHC) can play in helping reconstruct the underlying neutrino mass generation mechanism within the simplest high-scale minimal supergravity (mSUGRA) seesaw schemes. We study in detail the LFV scalar tau decays at the LHC, assuming that the observed neutrino masses arise either through the pure type-I or the simpler type-II seesaw mechanism. We perform a scan over the mSUGRA parameter space in order to identify regions where lepton flavour violating decays of χ20\chi^0_2 can be maximized, while respecting current low-energy constraints, such as those coming from the bounds on Br(μ→eγ\mu \to e \gamma). We estimate the cross section for χ20→χ10+τ+μ\chi^0_2 \to \chi^0_1 + \tau + \mu . Though insufficient for a full reconstruction of the seesaw, the search for LFV decays of supersymmetric states at the LHC brings complementary information to that coming from low energy neutrino oscillation experiments and LFV searches.Comment: 20 pages, 13 figures; minor changes; 4 references added, final version for publicatio

    Non-Abelian Discrete Symmetries and Neutrino Masses: Two Examples

    Full text link
    Two recent examples of non-Abelian discrete symmetries (S_3 and A_4) in understanding neutrino masses and mixing are discussed.Comment: 16 pages, no figure, invited contribution to NJP focus issue on neutrino
    corecore