713 research outputs found

    A Coupled Cavity Micro Fluidic Dye Ring Laser

    Full text link
    We present a laterally emitting, coupled cavity micro fluidic dye ring laser, suitable for integration into lab-on-a-chip micro systems. The micro-fluidic laser has been successfully designed, fabricated, characterized and modelled. The resonator is formed by a micro-fluidic channel bounded by two isosceles triangle mirrors. The micro-fluidic laser structure is defined using photo lithography in 10 microns thick SU-8 polymer on a glass substrate. The micro fluidic channel is sealed by a glass lid, using PMMA adhesive bonding. The laser is characterized using the laser dye Rhodamine 6G dissolved in ethanol or ethylene glycol as the active gain medium, which is pumped through the micro-fluidic channel and laser resonator. The dye laser is optically pumped normal to the chip plane at 532 nm by a pulsed, frequency doubled Nd:YAG laser and lasing is observed with a threshold pump pulse energy flux of around 55 micro-Joule/square-milimeter. The lasing is multi-mode, and the laser has switchable output coupling into an integrated polymer planar waveguide. Tuning of the lasing wavelength is feasible by changing the dye/solvent properties.Comment: Accepted for Microelectronic Engineerin

    Conformal phased array with beam forming for airborne satellite communication

    Get PDF
    For enhanced communication on board of aircraft novel antenna systems with broadband satellite-based capabilities are required. The installation of such systems on board of aircraft requires the development of a very low-profile aircraft antenna, which can point to satellites anywhere in the upper hemisphere. To this end, phased array antennas which are conformal to the aircraft fuselage are attractive. In this paper two key aspects of conformal phased array antenna arrays are addressed: the development of a broadband Ku-band antenna and the beam synthesis for conformal array antennas. The antenna elements of the conformal array are stacked patch antennas with dual linear polarization which have sufficient bandwidth. For beam forming synthesis a method based on a truncated Singular Value Decomposition is proposed

    Design of a ring resonator-based optical beam forming network for phased array receive antennas

    Get PDF
    A novel squint-free ring resonator-based optical beam forming network (OBFN) for phased array antennas (PAA) is proposed. It is intended to provide broadband connectivity to airborne platforms via geostationary satellites. In this paper, we present the design of the OBFN and its control system. Our goal is to deliver large bandwidth Ku-band connectivity between antennas, mount conformal to the airplane fuselage and on a geostationary satellite, respectively.This way it would be possible to bring live DVB-S television to airplane passengers. In this paper, we present recent research conducted on a 4 × 1 ring resonator-based OBFN test set-up. This OBFN has four optical input ports and one optical output port. It is tuned to provide the desired signal combination with optimal constructive interference between the modulated input signals from the PAA. Therefore, combining circuitry and delay elements are required. The OBFN is tuned by electrically heating tunable true time delay (TTD) elements. These are built using optical ring resonators (ORRs). By cascading multiple ORRs with different resonance frequencies, it is possible to create a TTD with a large bandwidth. Optical beam forming is used because it provides advantages over traditional beam forming methods. These advantages are: large bandwidth, EMI resistance, and, when integrated onto a single chip, compactness and low costs. The OBFN is created using planar optical waveguide technology and consists of the following building blocks: waveguides, Mach-Zehnder interferometers, (MZIs) couplers and ORRs. The tuning of the OBFN is done by an electronic control system using a microcontroller. Communication with a PC is possible using USB. To our knowledge, this is the first integrated ORR-based OBFN circuit for PAA satellite reception

    Identification of cubebin and epicubebin isolated from Piper cubeba L.f fruits with two D-NMR spectroscopy

    Get PDF
    One of the isolated active compound of the tracheospasmolytic from kemukus fruits (Piper cubeba L.f) is cubebin. The problem occurred when cubebin (C20H20O6) mixed with its epimer because of the difficultly to identify the structure by 1D-NMR spectroscopy. Structure identification then was conducted by 2D-NMR spectroscopy, so the structure of cubebin and epicubebin can be clear identified. Key words : Cubebin, epicubebin, identification, 2D-NM

    Alkaloid production by a Cinchona officinalis "Ledgeriana" hairy root culture containing constitutive expression constructs of tryptophan decarboxylase and strictosidine synthase cDNAs from Catharanthus roseus

    Get PDF
    Cinchona officinalis ‘Ledgeriana’, former called Cinchona ledgeriana, hairy roots were initiated containing constitutive-expression constructs of cDNAs encoding the enzymes tryptophan decarboxylase (TDC) and strictosidine synthase (STR) from Catharanthus roseus, two key enzymes in terpenoid indole and quinoline alkaloid biosynthesis. The successful integration of these genes and the reporter gene gus-int was demonstrated using Southern blotting and the polymerase chain reaction. The products of TDC and STR, tryptamine and strictosidine, were found in high amounts, 1200 and 1950 mg g–1 dry weight, respectively. Quinine and quinidine levels were found to rise up to 500 and 1000 mg g–1 dry weight, respectively. The results show that genetic engineering with multiple genes is well possible in hairy roots of C. officinalis. However, 1 year after analyzing the hairy roots for the first time, they had completely lost their capacity to accumulate alkaloids.info:eu-repo/semantics/publishedVersio

    Alkaloid production by a Cinchona officinalis "Ledgeriana" hairy root culture containing constitutive expression constructs of tryptophan decarboxylase and strictosidine synthase cDNAs from Catharanthus roseus

    Get PDF
    Cinchona officinalis ‘Ledgeriana’, former called Cinchona ledgeriana, hairy roots were initiated containing constitutive-expression constructs of cDNAs encoding the enzymes tryptophan decarboxylase (TDC) and strictosidine synthase (STR) from Catharanthus roseus, two key enzymes in terpenoid indole and quinoline alkaloid biosynthesis. The successful integration of these genes and the reporter gene gus-int was demonstrated using Southern blotting and the polymerase chain reaction. The products of TDC and STR, tryptamine and strictosidine, were found in high amounts, 1200 and 1950 mg g–1 dry weight, respectively. Quinine and quinidine levels were found to rise up to 500 and 1000 mg g–1 dry weight, respectively. The results show that genetic engineering with multiple genes is well possible in hairy roots of C. officinalis. However, 1 year after analyzing the hairy roots for the first time, they had completely lost their capacity to accumulate alkaloids.info:eu-repo/semantics/publishedVersio

    The changing integrin expression and a role for integrin beta 8 in the chondrogenic differentiation of mesenchymal stem cells

    Get PDF
    Many cartilage tissue engineering approaches aim to differentiate human mesenchymal stem cells (hMSCs) into chondrocytes and develop cartilage in vitro by targeting cell-matrix interactions. We sought to better inform the design of cartilage tissue engineering scaffolds by understanding how integrin expression changes during chondrogenic differentiation. In three models of in vitro chondrogenesis, we studied the temporal change of cartilage phenotype markers and integrin subunits during the differentiation of hMSCs. We found that transcript expression of most subunits was conserved across the chondrogenesis models, but was significantly affected by the time-course of differentiation. In particular, ITGB8 was up-regulated and its importance in chondrogenesis was further established by a knockdown of integrin ÎČ8, which resulted in a non-hyaline cartilage phenotype, with no COL2A1 expression detected. In conclusion, we performed a systematic study of the temporal changes of integrin expression during chondrogenic differentiation in multiple chondrogenesis models, and revealed a role for integrin ÎČ8 in chondrogenesis. This work enhances our understanding of the changing adhesion requirements of hMSCs during chondrogenic differentiation and underlines the importance of integrins in establishing a cartilage phenotype

    Digestion-on-a-chip:A continuous-flow modular microsystem recreating enzymatic digestion in the gastrointestinal tract

    Get PDF
    In vitro digestions are essential for determining the bioavailability of compounds, such as nutrients. We have developed a cell-free, miniaturized enzymatic digestive system, employing three micromixers connected in series to mimic the digestive functions of the mouth, stomach and small intestine. This system continuously processes samples, e.g. containing nutrients, to provide a constant flow of digested materials which may be presented to a subsequent gut-on-a-chip absorption module, containing living human intestinal cells. Our system incorporates three-compartment enzymatic digestion, one of the key functions of the gastrointestinal tract. In each of these compartments, we modify the chemical environment, including pH, buffer, and mineral composition, to closely mimic the local physiological environment and create optimal conditions for digestive processes to take place. It will therefore provide an excellent addition to existing gut-on-a-chip systems, providing the next step in determining the bio-availability of orally administered compounds in a fast and continuous-flow ex vivo system. In this paper, we demonstrate enzymatic digestion in each separate compartment using compounds, starch and casein, as model nutrients. The use of transparent, microfluidic micromixers based on chaotic advection, which can be probed directly with a microscope, enabled enzyme kinetics to be monitored from the very start of a reaction. Furthermore, we have digested lactoferrin in our system, demonstrating complete digestion of this milk protein in much shorter times than achievable with standard in vitro digestions using batch reactors
    • 

    corecore