56 research outputs found

    Perspectives of current-layer diagnostics in solar flares

    Full text link
    A reconnecting current layer is a `heart' of a solar flare, because it is a place of magnetic-field energy release. However there are no direct observations of these layers. The aim of our work is to understand why we actually do not directly observe current layers and what we need to do it in the future. The method is based on a simple mathematical model of a super-hot (T ~ 1E8 K) turbulent-current layer (SHTCL) and a model of plasma heating by the layer. The models allow us to study a correspondence between the main characteristics of the layer, such as temperature and dimensions, and the observational features, such as differential and integral emission measure of heated plasma, intensity of spectral lines Fe XXVI (1.78 and 1.51A) and Ni XXVII (1.59 A). This method provides a theoretical basis for determining parameters of the current layer from observations. Observations of SHTCLs are difficult, because the spectral line intensities are faint, but it is theoretically possible in the future. Observations in X-ray range 1.5--1.8 A with high spectral resolution (better than 0.01 A) and high temporal resolution (seconds) are needed. It is also very important to interpret the observations using a multi-temperature approach instead of the usual single or double temperature method

    Interpolation of equation-of-state data

    Full text link
    Aims. We use Hermite splines to interpolate pressure and its derivatives simultaneously, thereby preserving mathematical relations between the derivatives. The method therefore guarantees that thermodynamic identities are obeyed even between mesh points. In addition, our method enables an estimation of the precision of the interpolation by comparing the Hermite-spline results with those of frequent cubic (B-) spline interpolation. Methods. We have interpolated pressure as a function of temperature and density with quintic Hermite 2D-splines. The Hermite interpolation requires knowledge of pressure and its first and second derivatives at every mesh point. To obtain the partial derivatives at the mesh points, we used tabulated values if given or else thermodynamic equalities, or, if not available, values obtained by differentiating B-splines. Results. The results were obtained with the grid of the SAHA-S equation-of-state (EOS) tables. The maximum lgPlg P difference lies in the range from 10910^{-9} to 10410^{-4}, and Γ1\Gamma_1 difference varies from 10910^{-9} to 10310^{-3}. Specifically, for the points of a solar model, the maximum differences are one order of magnitude smaller than the aforementioned values. The poorest precision is found in the dissociation and ionization regions, occurring at T1.5103105T \sim 1.5\cdot 10^3 - 10^5 K. The best precision is achieved at higher temperatures, T>105T>10^5 K. To discuss the significance of the interpolation errors we compare them with the corresponding difference between two different equation-of-state formalisms, SAHA-S and OPAL 2005. We find that the interpolation errors of the pressure are a few orders of magnitude less than the differences from between the physical formalisms, which is particularly true for the solar-model points.Comment: Accepted for publication in A&

    Cleanup of Water Surface from Oil Spills Using Natural Sorbent Materials

    Get PDF
    The following indicators were used to compare sorption efficiency of the test objects: oil capacity (OC), buoyancy, solubility of hydrocarbons in water, and water absorption (WA). Hereby, it was determined that the peat moss carbonized at the temperature of 200-250°С and modified by acetic acid has high sorption capacity. The sorbents introduced can increase the efficiency of water surface cleaning up until the water is almost clean and the residual oil content in water is less than 0.03 g/l

    Equation of state SAHA-S meets stellar evolution code CESAM2k

    Full text link
    We present an example of an interpolation code of the SAHA-S equation of state that has been adapted for use in the stellar evolution code CESAM2k. The aim is to provide the necessary data and numerical procedures for its implementation in a stellar code. A technical problem is the discrepancy between the sets of thermodynamic quantities provided by the SAHA-S equation of state and those necessary in the CESAM2k computations. Moreover, the independent variables in a practical equation of state (like SAHA-S) are temperature and density, whereas for modelling calculations the variables temperature and pressure are preferable. Specifically for the CESAM2k code, some additional quantities and their derivatives must be provided. To provide the bridge between the equation of state and stellar modelling, we prepare auxiliary tables of the quantities that are demanded in CESAM2k. Then we use cubic spline interpolation to provide both smoothness and a good approximation of the necessary derivatives. Using the B-form of spline representation provides us with an efficient algorithm for three-dimensional interpolation. The table of B-spline coefficients provided can be directly used during stellar model calculations together with the module of cubic spline interpolation. This implementation of the SAHA-S equation of state in the CESAM2k stellar structure and evolution code has been tested on a solar model evolved to the present. A comparison with other equations of state is briefly discussed. The choice of a regular net of mesh points for specific primary quantities in the SAHA-S equation of state, together with accurate and consistently smooth tabulated values, provides an effective algorithm of interpolation in modelling calculations. The proposed module of interpolation procedures can be easily adopted in other evolution codes.Comment: 8 pages, 5 figure

    THE MAIN DIRECTIONS OF THE DIGITAL PROFILE CONCEPT DEVELOPMENT. FOREIGN EXPERIENCE AND DEVELOPMENT PROSPECTS

    Get PDF
    An approach to solving a comlex and urgent problem facing state and near-state agencies has been described: to provide popular modern services to citizens, while reducing operating costs through the use of digital technologies to improve citizen service and develop more effective ways to work. At the moment, this is achievable by developing a unified information base for the provision of public services, based on the creation of a digital citizen profile. A comparative review of international experience in the field of digitalization of the process of interaction between citizens and government structures has been presented. In accordance with the digitalization programs launched in many countries almost simultaneously, many commercial and social projects are being developed. All of them become available when using complex analytical tools for processing Big data and a Unified identification and authentication system

    Magnetic Field Effects on the Structure and Evolution of Overdense Radiatively Cooling Jets

    Get PDF
    We investigate the effect of magnetic fields on the propagation dynamics and morphology of overdense, radiatively cooling, supermagnetosonic jets, with the help of fully three-dimensional SPMHD simulations. Evaluated for a set of parameters which are mainly suitable for protostellar jets (with density ratios between the jet and the ambient medium 3-10, and ambient Mach number ~ 24), these simulations are also compared with baseline non-magnetic and adiabatic calculations. We find that, after amplification by compression and re-orientation in nonparallel shocks at the working surface, the magnetic field that is carried backward with the shocked gas into the cocoon improves the jet collimation relative to the purely hydrodynamic (HD) systems. Low-amplitude, approximately equally spaced internal shocks (which are absent in the HD systems) are produced by MHD K-H reflection pinch modes. The longitudinal field geometry also excites non-axisymmetric helical modes which cause some beam wiggling. The strength and amount of these modes are, however, reduced (by ~ twice) in the presence of radiative cooling relative to the adiabatic cases. Besides, a large density ratio between the jet and the ambient medium also reduces, in general, the number of the internal shocks. As a consequence, the weakness of the induced internal shocks makes it doubtful that the magnetic pinches could produce by themselves the bright knots observed in the overdense, radiatively cooling protostellar jets.Comment: To appear in ApJ; 36 pages + 16 (gif) figures. PostScript files of figures are available at http://www.iagusp.usp.br/preprints/preprint.htm

    The Active Corona of HD 35850 (F8 V)

    Get PDF
    We present Extreme Ultraviolet Explorer spectroscopy and photometry of the nearby F8 V star HD 35850 (HR 1817). The EUVE spectra reveal 28 emission lines from Fe IX and Fe XV to Fe XXIV. The Fe XXI 102, 129 A ratio yields an upper limit for the coronal electron density, log n < 11.6 per cc. The EUVE SW spectrum shows a small but clearly detectable continuum. The line-to-continuum ratio indicates approximately solar Fe abundances, 0.8 < Z < 1.6. The resulting emission-measure distribution is characterized by two temperature components at log T of 6.8 and 7.4. The EUVE spectra have been compared with non-simultaneous ASCA SIS spectra of HD 35850. The SIS spectrum shows the same temperature distribution as the EUVE DEM analysis. However, the SIS spectral firs suggest sub-solar abundances, 0.34 < Z < 0.81. Although some of the discrepancy may be the result of incomplete X-ray line lists, we cannot explain the disagreement between the EUVE line-to-continuum ratio and the ASCA-derived Fe abundance. Given its youth (t ~ 100 Myr), its rapid rotation (v sin i ~ 50 km/s), and its high X-ray activity (Lx ~ 1.5E+30 ergs/s), HD 35850 may represent an activity extremum for single, main-sequence F-type stars. The variability and EM distribution can be reconstructed using the continuous flaring model of Guedel provided that the flare distribution has a power-law index of 1.8. Similar results obtained for other young solar analogs suggest that continuous flaring is a viable coronal heating mechanism on rapidly rotating, late-type, main-sequence stars.Comment: 32 pages incl. 14 figures and 3 tables. To appear in the 1999 April 10 issue of The Astrophysical Journa

    The cerium content of the Milky Way as revealed by Gaia DR3 GSP-Spec abundances

    Get PDF
    The recent Gaia Third Data Release contains a homogeneous analysis of millions of high-quality Radial Velocity Spectrometer (RVS) stellar spectra by the GSP-Spec module. This lead to the estimation of millions of individual chemical abundances and allows us to chemically map the Milky Way. Among the published GSP-Spec abundances, three heavy-elements produced by neutron-captures in stellar interiors can be found: Ce, Zr and Nd. We use a sample of about 30,000 LTE Ce abundances, selected after applying different combinations of GSP-Spec flags. Thanks to the Gaia DR3 astrometric data and radial velocities, we explore the cerium content in the Milky Way and, in particular, in its halo and disc components. The high quality of the Ce GSP-Spec abundances is quantified thanks to literature comparisons. We found a rather flat [Ce/Fe] versus [M/H] trend. We also found a flat radial gradient in the disc derived from field stars and, independently, from about 50 open clusters, in agreement with previous studies. The [Ce/Fe] vertical gradient has also been estimated. We also report an increasing [Ce/Ca] vs [Ca/H] in the disc, illustrating the late contribution of AGB with respect to SN II. Our cerium abundances in the disc, including the young massive population, are well reproduced by a new three-infall chemical evolution model. Among the halo population, the M 4 globular cluster is found to be enriched in cerium. Moreover, eleven stars with cerium abundances belonging to the Thamnos, Helmi Stream and Gaia-Sausage-Enceladus accreted systems were identified from chemo-dynamical diagnostics. We found that the Helmi Stream could be slightly underabundant in cerium, compared to the two other systems. This work illustrates the high quality of the GSP-Spec chemical abundances, that significantly contributes to unveil the heavy elements evolution history of the Milky Way.Comment: 15 pages, 10 figures, submitted to A&

    Nanosystems for Health and Environment

    Get PDF
    Context. The Sun is the most studied of all stars, which serves as a reference for all other observed stars in the Universe. Furthermore, it also serves the role of a privileged laboratory of fundamental physics and can help us better understand processes occuring in conditions irreproducible on Earth. However, our understanding of our star is currently lessened by the so-called solar modelling problem, resulting from comparisons of theoretical solar models to helioseismic constraints. These discrepancies can stem from various causes, such as the radiative opacities, the equation of state as well as the mixing of the chemical elements

    Recent Advances in Understanding Particle Acceleration Processes in Solar Flares

    Full text link
    We review basic theoretical concepts in particle acceleration, with particular emphasis on processes likely to occur in regions of magnetic reconnection. Several new developments are discussed, including detailed studies of reconnection in three-dimensional magnetic field configurations (e.g., current sheets, collapsing traps, separatrix regions) and stochastic acceleration in a turbulent environment. Fluid, test-particle, and particle-in-cell approaches are used and results compared. While these studies show considerable promise in accounting for the various observational manifestations of solar flares, they are limited by a number of factors, mostly relating to available computational power. Not the least of these issues is the need to explicitly incorporate the electrodynamic feedback of the accelerated particles themselves on the environment in which they are accelerated. A brief prognosis for future advancement is offered.Comment: This is a chapter in a monograph on the physics of solar flares, inspired by RHESSI observations. The individual articles are to appear in Space Science Reviews (2011
    corecore