2,940 research outputs found

    Health system barriers and facilitators to medication adherence for the secondary prevention of cardiovascular disease: a systematic review

    Get PDF
    Background: Secondary prevention is cost-effective for cardiovascular disease (CVD), but uptake is suboptimal. Understanding barriers and facilitators to adherence to secondary prevention for CVD at multiple health system levels may inform policy. Objectives: To conduct a systematic review of barriers and facilitators to adherence/persistence to secondary CVD prevention medications at health system level. Methods: Included studies reported effects of health system level factors on adherence/persistence to secondary prevention medications for CVD (coronary artery or cerebrovascular disease). Studies considered at least one of β blockers, statins, angiotensin–renin system blockers and aspirin. Relevant databases were searched from 1 January 1966 until 1 October 2015. Full texts were screened for inclusion by 2 independent reviewers. Results: Of 2246 screened articles, 25 studies were included (12 trials, 11 cohort studies, 1 cross-sectional study and 1 case–control study) with 132 140 individuals overall (smallest n=30, largest n=63 301). 3 studies included upper middle-income countries, 1 included a low middle-income country and 21 (84%) included high-income countries (9 in the USA). Studies concerned established CVD (n=4), cerebrovascular disease (n=7) and coronary heart disease (n=14). Three studies considered persistence and adherence. Quantity and quality of evidence was limited for adherence, persistence and across drug classes. Studies were concerned with governance and delivery (n=19, including 4 trials of fixed-dose combination therapy, FDC), intellectual resources (n=1), human resources (n=1) and health system financing (n=4). Full prescription coverage, reduced copayments, FDC and counselling were facilitators associated with higher adherence. Conclusions: High-quality evidence on health system barriers and facilitators to adherence to secondary prevention medications for CVD is lacking, especially for low-income settings. Full prescription coverage, reduced copayments, FDC and counselling may be effective in improving adherence and are priorities for further research

    An experimental observation of geometric phases for mixed states using NMR interferometry

    Get PDF
    Examples of geometric phases abound in many areas of physics. They offer both fundamental insights into many physical phenomena and lead to interesting practical implementations. One of them, as indicated recently, might be an inherently fault-tolerant quantum computation. This, however, requires to deal with geometric phases in the presence of noise and interactions between different physical subsystems. Despite the wealth of literature on the subject of geometric phases very little is known about this very important case. Here we report the first experimental study of geometric phases for mixed quantum states. We show how different they are from the well understood, noiseless, pure-state case.Comment: 4 pages, 3 figure

    Donor-acceptor recombination emission in hydrogen-terminated nanodiamond: Novel single-photon source for room-temperature quantum photonics

    Full text link
    In fluorescence spectra of nanodiamonds (NDs) synthesized at high pressure from adamantane and other organic compounds, very narrow (~1 nm) lines of unknown origin are observed in a wide spectroscopic range from ~500 to 800 nm. Here, we propose and experimentally substantiate the hypothesis that these mysterious lines arise from radiative recombination of donor-acceptor pairs (DAPs). To confirm our hypothesis, we study the fluorescence spectra of undoped and nitrogen-doped NDs of different sizes, before and after thermal oxidation of their surface. The results obtained with a high degree of confidence allowed us to conclude that the DAPs are formed through the interaction of donor-like substitutional nitrogen present in the diamond lattice, and a 2D layer of acceptors resulting from the transfer doping effect on the surface of hydrogen-terminated NDs. A specific behavior of the DAP-induced lines was discovered in the temperature range of 100-10 K: their energy increases and most lines are split into 2 or more components with decreasing temperature. It is shown that the majority of the studied DAP emitters are sources of single photons, with an emission rate of up to >1 million counts/s at room temperature, which significantly surpasses that of nitrogen-vacancy and silicon-vacancy centers under the same detection conditions. Despite an observed temporal instability in the emission, the DAP emitters of H-terminated NDs represent a powerful room-temperature single-photon source for quantum optical technologies

    A Decolonial Critique of the Racialized “Localwashing” of Extraction in Central Africa

    Get PDF
    Responding to calls for increased attention to actions and reactions “from above” within the extractive industry, we offer a decolonial critique of the ways in which corporate entities and multinational institutions propagate racialized rhetoric of “local” suffering, “local” consultation, and “local” fault for failure in extractive zones. Such rhetoric functions to legitimize extractive intervention within a set of practices that we call localwashing. Drawing from a decade of research on and along the Chad-Cameroon Oil Pipeline, we show how multi-scalar actors converged to assert knowledge of, responsibility for, and collaborations with “local” people within a racialized politics of scale. These corporate representations of the racialized “local” are coded through long-standing colonial tropes. We identify three interrelated and overlapping flexian elite rhetoric(s) and practices of racialized localwashing: (a) anguishing, (b) arrogating, and (c) admonishing. These elite representations of a racialized “local” reveal diversionary efforts “from above” to manage public opinion, displace blame for project failures, and domesticate dissent in a context of persistent scrutiny and criticism from international and regional advocates and activists

    ACBAR: The Arcminute Cosmology Bolometer Array Receiver

    Full text link
    We describe the Arcminute Cosmology Bolometer Array Receiver (ACBAR); a multifrequency millimeter-wave receiver designed for observations of the Cosmic Microwave Background (CMB) and the Sunyaev-Zel'dovich effect in clusters of galaxies. The ACBAR focal plane consists of a 16-pixel, background-limited, 240 mK bolometer array that can be configured to observe simultaneously at 150, 220, 280, and 350 GHz. With 4-5' FWHM Gaussian beam sizes and a 3 degree azimuth chop, ACBAR is sensitive to a wide range of angular scales. ACBAR was installed on the 2 m Viper telescope at the South Pole in January 2001. We describe the design of the instrument and its performance during the 2001 and 2002 observing seasons.Comment: 59 pages, 16 figures -- updated to reflect version published in ApJ

    A phase I trial of Capecitabine+Gemcitabine with radical radiation for locally advanced pancreatic cancer

    Get PDF
    Standard chemoradiotherapy with infusional 5FU for locally advanced pancreatic cancer (LAPC) has limited efficacy in this disease. The combination of Capecitabine (Cap) and Gemcitabine (Gem) are synergistic and are potent radiosensitisers. The aim of this phase I trial was thus to determine the highest administered dose of the Cap plus Gem combination with radical radiotherapy (RT) for LAPC. Patients had LAPC, adequate organ function, ECOG PS 0–1. During RT, Gem was escalated from 20–50 mg m−2 day−1 (twice per week), and Cap 800–2000 mg m−2 day−1 (b.i.d, days 1–5 of each week). Radiotherapy 50.4 Gy/28 fractions/5.5 weeks, using 3D-conformal techniques. Three patients were entered to each dose level (DL). Dose-limiting toxicity(s) (DLTs) were based on treatment-related toxicities. Twenty patients were accrued. Dose level (DL) 1: Cap/Gem; 800/20 mg m−2 day−1 (3 patients), DL2: 1000/20 (12 patients), DL3: 1300/30 (5 patients). Dose-limiting toxicities were observed in DL3; grade 3 dehydration (1 patient) and grade 3 diarrhoea and dehydration (1 patient). Dose level 2 was the recommend phase 2 dose. Disease control rate was 75%: PR=15%, SD=60%. Median overall survival was 11.2 months. The addition of Cap and Gem to radical RT was feasible and active and achieved at relatively low doses

    Braneworld Tensor Anisotropies in the CMB

    Get PDF
    Cosmic microwave background (CMB) observations provide in principle a high-precision test of models which are motivated by M theory. We set out the framework of a program to compute the tensor anisotropies in the CMB that are generated in braneworld models. In the simplest approximation, we show the braneworld imprint as a correction to the power spectra for standard temperature and polarization anisotropies.Comment: Minor corrections and references added. Accepted for publication in Phys. Rev.

    Present Status and Future Programs of the n_TOF Experiment

    Get PDF
    This is an Open Access article distributed under the terms of the Creative Commons Attribution-Noncommercial License 3.0, which permits unrestricted use, distribution, and reproduction in any noncommercial medium, provided the original work is properly citedThe neutron time-of-flight facility n_TOF at CERN, Switzerland, operational since 2001, delivers neutrons using the Proton Synchrotron (PS) 20 GeV/c proton beam impinging on a lead spallation target. The facility combines a very high instantaneous neutron flux, an excellent time of flight resolution due to the distance between the experimental area and the production target (185 meters), a low intrinsic background and a wide range of neutron energies, from thermal to GeV neutrons. These characteristics provide a unique possibility to perform neutron-induced capture and fission cross-section measurements for applications in nuclear astrophysics and in nuclear reactor technology.The most relevant measurements performed up to now and foreseen for the future will be presented in this contribution. The overall efficiency of the experimental program and the range of possible measurements achievable with the construction of a second experimental area (EAR-2), vertically located 20 m on top of the n_TOF spallation target, might offer a substantial improvement in measurement sensitivities. A feasibility study of the possible realisation of the installation extension will be also presented

    A neural oscillations perspective on phonological development and phonological processing in developmental dyslexia

    Get PDF
    Children’s ability to reflect upon and manipulate the sounds in words (’phonological awareness’) develops as part of natural language acquisition, supports reading acquisition, and develops further as reading and spelling are learned. Children with developmental dyslexia typically have impairments in phonological awareness. Many developmental factors contribute to individual differences in phonological development. One important source of individual differences may be the child’s sensory/neural processing of the speech signal from an amplitude modulation (~ energy or intensity variation) perspective, which may affect the quality of the sensory/neural representations (’phonological representations’) that support phonological awareness. During speech encoding, brain electrical rhythms (oscillations, rhythmic variations in neural excitability) re-calibrate their temporal activity to be in time with rhythmic energy variations in the speech signal. The accuracy of this neural alignment or ’entrainment’ process is related to speech intelligibility. Recent neural studies demonstrate atypical oscillatory function at slower rates in children with developmental dyslexia. Potential relations with the development of phonological awareness by children with dyslexia are discussed.Medical Research Council, G0400574 and G090237
    corecore