305 research outputs found

    Spherically symmetric relativistic stellar structures

    Full text link
    We investigate relativistic spherically symmetric static perfect fluid models in the framework of the theory of dynamical systems. The field equations are recast into a regular dynamical system on a 3-dimensional compact state space, thereby avoiding the non-regularity problems associated with the Tolman-Oppenheimer-Volkoff equation. The global picture of the solution space thus obtained is used to derive qualitative features and to prove theorems about mass-radius properties. The perfect fluids we discuss are described by barotropic equations of state that are asymptotically polytropic at low pressures and, for certain applications, asymptotically linear at high pressures. We employ dimensionless variables that are asymptotically homology invariant in the low pressure regime, and thus we generalize standard work on Newtonian polytropes to a relativistic setting and to a much larger class of equations of state. Our dynamical systems framework is particularly suited for numerical computations, as illustrated by several numerical examples, e.g., the ideal neutron gas and examples that involve phase transitions.Comment: 23 pages, 25 figures (compressed), LaTe

    Perfect fluids and generic spacelike singularities

    Full text link
    We present the conformally 1+3 Hubble-normalized field equations together with the general total source equations, and then specialize to a source that consists of perfect fluids with general barotropic equations of state. Motivating, formulating, and assuming certain conjectures, we derive results about how the properties of fluids (equations of state, momenta, angular momenta) and generic spacelike singularities affect each other.Comment: Considerable changes have been made in presentation and arguments, resulting in sharper conclusion

    Dynamics of spatially homogeneous solutions of the Einstein-Vlasov equations which are locally rotationally symmetric

    Get PDF
    The dynamics of a class of cosmological models with collisionless matter and four Killing vectors is studied in detail and compared with that of corresponding perfect fluid models. In many cases it is possible to identify asymptotic states of the spacetimes near the singularity or in a phase of unlimited expansion. Bianchi type II models show oscillatory behaviour near the initial singularity which is, however, simpler than that of the mixmaster model.Comment: 27 pages, 3 figures, LaTe

    Homoclinic chaos and energy condition violation

    Get PDF
    In this letter we discuss the connection between so-called homoclinic chaos and the violation of energy conditions in locally rotationally symmetric Bianchi type IX models, where the matter is assumed to be non-tilted dust and a positive cosmological constant. We show that homoclinic chaos in these models is an artifact of unphysical assumptions: it requires that there exist solutions with positive matter energy density ρ>0\rho>0 that evolve through the singularity and beyond as solutions with negative matter energy density ρ<0\rho<0. Homoclinic chaos is absent when it is assumed that the dust particles always retain their positive mass.In addition, we discuss more general models: for solutions that are not locally rotionally symmetric we demonstrate that the construction of extensions through the singularity, which is required for homoclinic chaos, is not possible in general.Comment: 4 pages, RevTe

    Asymptotic silence of generic cosmological singularities

    Full text link
    In this letter we investigate the nature of generic cosmological singularities using the framework developed by Uggla et al. We do so by studying the past asymptotic dynamics of general vacuum G2 cosmologies, models that are expected to capture the singular behavior of generic cosmologies with no symmetries at all. In particular, our results indicate that asymptotic silence holds, i.e., that particle horizons along all timelines shrink to zero for generic solutions. Moreover, we provide evidence that spatial derivatives become dynamically insignificant along generic timelines, and that the evolution into the past along such timelines is governed by an asymptotic dynamical system which is associated with an invariant set -- the silent boundary. We also identify an attracting subset on the silent boundary that organizes the oscillatory dynamics of generic timelines in the singular regime. In addition, we discuss the dynamics associated with recurring spike formation.Comment: 4 pages, 5 *.eps figures, RevTeX4; replaced by significantly revised version, to appear in Physical Review Letter

    Matter and dynamics in closed cosmologies

    Full text link
    To systematically analyze the dynamical implications of the matter content in cosmology, we generalize earlier dynamical systems approaches so that perfect fluids with a general barotropic equation of state can be treated. We focus on locally rotationally symmetric Bianchi type IX and Kantowski-Sachs orthogonal perfect fluid models, since such models exhibit a particularly rich dynamical structure and also illustrate typical features of more general cases. For these models, we recast Einstein's field equations into a regular system on a compact state space, which is the basis for our analysis. We prove that models expand from a singularity and recollapse to a singularity when the perfect fluid satisfies the strong energy condition. When the matter source admits Einstein's static model, we present a comprehensive dynamical description, which includes asymptotic behavior, of models in the neighborhood of the Einstein model; these results make earlier claims about ``homoclinic phenomena and chaos'' highly questionable. We also discuss aspects of the global asymptotic dynamics, in particular, we give criteria for the collapse to a singularity, and we describe when models expand forever to a state of infinite dilution; possible initial and final states are analyzed. Numerical investigations complement the analytical results.Comment: 23 pages, 24 figures (compressed), LaTe

    A unified treatment of cubic invariants at fixed and arbitrary energy

    Full text link
    Cubic invariants for two-dimensional Hamiltonian systems are investigated using the Jacobi geometrization procedure. This approach allows for a unified treatment of invariants at both fixed and arbitrary energy. In the geometric picture the invariant generally corresponds to a third rank Killing tensor, whose existence at a fixed energy value forces the metric to satisfy a nonlinear integrability condition expressed in terms of a Kahler potential. Further conditions, leading to a system of equations which is overdetermined except for singular cases, are added when the energy is arbitrary. As solutions to these equations we obtain several new superintegrable cases in addition to the previously known cases. We also discover a superintegrable case where the cubic invariant is of a new type which can be represented by an energy dependent linear invariant. A complete list of all known systems which admit a cubic invariant at arbitrary energy is given.Comment: 16 pages, LaTeX2e, slightly revised version. To appear in J. Math. Phys. vol 41, pp 370-384 (2000

    An almost isotropic cosmic microwave temperature does not imply an almost isotropic universe

    Get PDF
    In this letter we will show that, contrary to what is widely believed, an almost isotropic cosmic microwave background (CMB) temperature does not imply that the universe is ``close to a Friedmann-Lemaitre universe''. There are two important manifestations of anisotropy in the geometry of the universe, (i) the anisotropy in the overall expansion, and (ii) the intrinsic anisotropy of the gravitational field, described by the Weyl curvature tensor, although the former usually receives more attention than the latter in the astrophysical literature. Here we consider a class of spatially homogeneous models for which the anisotropy of the CMB temperature is within the current observational limits but whose Weyl curvature is not negligible, i.e. these models are not close to isotropy even though the CMB temperature is almost isotropic.Comment: 5 pages (AASTeX, aaspp4.sty), submitted to Astrophysical Journal Letter
    corecore