255 research outputs found

    Probing optomechanical correlations between two optical beams down to the quantum level

    Full text link
    Quantum effects of radiation pressure are expected to limit the sensitivity of second-generation gravitational-wave interferometers. Though ubiquitous, such effects are so weak that they haven't been experimentally demonstrated yet. Using a high-finesse optical cavity and a classical intensity noise, we have demonstrated radiation-pressure induced correlations between two optical beams sent into the same moving mirror cavity. Our scheme can be extended down to the quantum level and has applications both in high-sensitivity measurements and in quantum optics

    Molecular Modeling of Mechanosensory Ion Channel Structural and Functional Features

    Get PDF
    The DEG/ENaC (Degenerin/Epithelial Sodium Channel) protein family comprises related ion channel subunits from all metazoans, including humans. Members of this protein family play roles in several important biological processes such as transduction of mechanical stimuli, sodium re-absorption and blood pressure regulation. Several blocks of amino acid sequence are conserved in DEG/ENaC proteins, but structure/function relations in this channel class are poorly understood. Given the considerable experimental limitations associated with the crystallization of integral membrane proteins, knowledge-based modeling is often the only route towards obtaining reliable structural information. To gain insight into the structural characteristics of DEG/ENaC ion channels, we derived three-dimensional models of MEC-4 and UNC-8, based on the available crystal structures of ASIC1 (Acid Sensing Ion Channel 1). MEC-4 and UNC-8 are two DEG/ENaC family members involved in mechanosensation and proprioception respectively, in the nematode Caenorhabditis elegans. We used these models to examine the structural effects of specific mutations that alter channel function in vivo. The trimeric MEC-4 model provides insight into the mechanism by which gain-of-function mutations cause structural alterations that result in increased channel permeability, which trigger cell degeneration. Our analysis provides an introductory framework to further investigate the multimeric organization of the DEG/ENaC ion channel complex

    Mass Sensing for the Advanced Fabrication of Nanomechanical Resonators

    Get PDF
    We report on a nanomechanical engineering method to monitor matter growth in real time via e-beam electromechanical coupling. This method relies on the exceptional mass sensing capabilities of nanomechanical resonators. Focused electron beam-induced deposition (FEBID) is employed to selectively grow platinum particles at the free end of singly clamped nanotube cantilevers. The electron beam has two functions: it allows both to grow material on the nanotube and to track in real time the deposited mass by probing the noise-driven mechanical resonance of the nanotube. On the one hand, this detection method is highly effective as it can resolve mass deposition with a resolution in the zeptogram range; on the other hand, this method is simple to use and readily available to a wide range of potential users because it can be operated in existing commercial FEBID systems without making any modification. The presented method allows one to engineer hybrid nanomechanical resonators with precisely tailored functionalities. It also appears as a new tool for studying the growth dynamics of ultrathin nanostructures, opening new opportunities for investigating so far out-of-reach physics of FEBID and related methods

    Real-time measurement of nanotube resonator fluctuations in an electron microscope

    Get PDF
    Mechanical resonators based on low-dimensional materials provide a unique platform for exploring a broad range of physical phenomena. The mechanical vibrational states are indeed extremely sensitive to charges, spins, photons, and adsorbed masses. However, the roadblock is often the readout of the resonator, because the detection of the vibrational states becomes increasingly difficult for smaller resonators. Here, we report an unprecedentedly sensitive method to detect nanotube resonators with effective masses in the 10–20 kg range. We use the beam of an electron microscope to resolve the mechanical fluctuations of a nanotube in real-time for the first time. We obtain full access to the thermally driven Brownian motion of the resonator, both in space and time domains. Our results establish the viability of carbon nanotube resonator technology at room temperature and pave the way toward the observation of novel thermodynamics regimes and quantum effects in nanomechanics

    Optomechanics with a hybrid carbon nanotube resonator

    Get PDF
    © 2018 The Author(s). In just 20 years of history, the field of optomechanics has achieved impressive progress, stepping into the quantum regime just 5 years ago. Such remarkable advance relies on the technological revolution of nano-optomechanical systems, whose sensitivity towards thermal decoherence is strongly limited due to their ultra-low mass. Here we report a hybrid approach pushing nano-optomechanics to even lower scales. The concept relies on synthesising an efficient optical scatterer at the tip of singly clamped carbon nanotube resonators. We demonstrate high signal-to-noise motion readout and record force sensitivity, two orders of magnitude below the state of the art. Our work opens the perspective to extend quantum experiments and applications at room temperature

    The incidence of myelodysplastic syndromes in Western Greece is increasing.

    Get PDF
    Descriptive epidemiology of the myelodysplastic syndromes (MDS) is always interesting and may reveal time-dependent and geographical variations, as well as occupational exposure. Epidemiological data in Greece are not available by now. We have collected and analyzed medical records of all patients with a documented diagnosis of MDS, performed by an expert hematologist and/or hematopathologist, in the geographical area of Western Greece, during the 20-year period, defined between 1990 and 2009. We have then calculated and described demographic and clinical features of the diagnosed MDS patient population, and assessed the incidence and prevalence rates of MDS in Western Greece, during the above-mentioned period. A total of 855 patients with newly diagnosed MDS have been identified. Refractory anemia was the most common subtype in both FAB and WHO classification systems and in both genders. Del-5q and RARS were more commonly encountered among females, and the dysplastic subtype of chronic myelomonocytic leukemia among males. Trisomy 8 was the most common single cytogenetic abnormality. The crude mean annual incidence rate of MDS was 6.0 per 100,000 inhabitants aged ≥15 years old (all subtypes according to FAB), and it was 4.8 per 100,000 when CMML and RAEB-T were excluded. Crude incidence rate was higher in rural than in urban areas, but this finding was not confirmed after age standardization. Age-standardized mean annual incidence rate in men was 7.9/100,000 and in women 3.4/100,000. A continuously increasing incidence rate of MDS has been observed throughout the study period

    Transient Global Amnesia and Takosubo Syndrome: A Case Report

    Get PDF
    Broken heart syndrome, also called apical ballooning syndrome or Takotsubo cardiomyopathy, is characterized by an acute, transient systolic dysfunction of the apical and mid segments of the left ventricle. There have been reports showing an association with neurologic disorders. In this article, we present the case of a female patient, who suffered from an episode of transient global amnesia followed by takotsubo cardiomyopathy

    Single left coronary artery with origin of right coronary artery from left circumflex: a case report

    Get PDF
    which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Background: A 40-years-old female presented with intermittent chest pain and dyspnea on exertion. Case Presentation: Electrocardiography showed sinus rhythm with ST-depression in inferior and lateral leads. Subsequent exercise treadmill testing revealed significant ST-depression in V4–V5 and V6 leads. Coronary angiography later showed a single left coronary artery with right coronary artery arising from left circumflex artery, a rare anomaly of coronary arteries. No atheromatous lesion was seen during angiography. Conclusion: The dignosis of this anomaly is importsnt because the symptoms cannot be differentiated from atherosclerotic coronary artery disease. Case presentation A 40-years-old female was admitted to the hospital with intermittent substernal chest pain and dyspnea. She visited our outpatient clinic because of exacerbation o

    Autophagy induction extends lifespan and reduces lipid content in response to frataxin silencing in C. elegans

    Get PDF
    Severe mitochondria deficiency leads to a number of devastating degenerative disorders, yet, mild mitochondrial dysfunction in different species, including the nematode Caenorhabditis elegans, can have pro-longevity effects. This apparent paradox indicates that cellular adaptation to partial mitochondrial stress can induce beneficial responses, but how this is achieved is largely unknown. Complete absence of frataxin, the mitochondrial protein defective in patients with Friedreich's ataxia, is lethal in C. elegans, while its partial deficiency extends animal lifespan in a p53 dependent manner. In this paper we provide further insight into frataxin control of C. elegans longevity by showing that a substantial reduction of frataxin protein expression is required to extend lifespan, affect sensory neurons functionality, remodel lipid metabolism and trigger autophagy. We find that Beclin and p53 genes are required to induce autophagy and concurrently reduce lipid storages and extend animal lifespan in response to frataxin suppression. Reciprocally, frataxin expression modulates autophagy in the absence of p53. Human Friedreich ataxia-derived lymphoblasts also display increased autophagy, indicating an evolutionarily conserved response to reduced frataxin expression. In sum, we demonstrate a causal connection between induction of autophagy and lifespan extension following reduced frataxin expression, thus providing the rationale for investigating autophagy in the pathogenesis and treatment of Friedreich's ataxia and possibly other human mitochondria-associated disorders

    Autophagy in healthy aging and disease

    Get PDF
    Autophagy is a fundamental cellular process that eliminates molecules and subcellular elements, including nucleic acids, proteins, lipids and organelles, via lysosome-mediated degradation to promote homeostasis, differentiation, development and survival. While autophagy is intimately linked to health, the intricate relationship among autophagy, aging and disease remains unclear. This Review examines several emerging features of autophagy and postulates how they may be linked to aging as well as to the development and progression of disease. In addition, we discuss current preclinical evidence arguing for the use of autophagy modulators as suppressors of age-related pathologies such as neurodegenerative diseases. Finally, we highlight key questions and propose novel research avenues that will likely reveal new links between autophagy and the hallmarks of aging. Understanding the precise interplay between autophagy and the risk of age-related pathologies across organisms will eventually facilitate the development of clinical applications that promote long-term health
    • …
    corecore