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ABSTRACT: Mechanical resonators based on low-dimensional
materials provide a unique platform for exploring a broad range
of physical phenomena. The mechanical vibrational states are
indeed extremely sensitive to charges, spins, photons, and
adsorbed masses. However, the roadblock is often the readout
of the resonator, because the detection of the vibrational states
becomes increasingly difficult for smaller resonators. Here, we
report an unprecedentedly sensitive method to detect nanotube
resonators with effective masses in the 10−20 kg range. We use
the beam of an electron microscope to resolve the mechanical
fluctuations of a nanotube in real-time for the first time. We
obtain full access to the thermally driven Brownian motion of
the resonator, both in space and time domains. Our results
establish the viability of carbon nanotube resonator technology at room temperature and pave the way toward the observation of
novel thermodynamics regimes and quantum effects in nanomechanics.
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Mechanical resonators based on nanotubes,1−3 nano-
wires,5,6 graphene,7−9 and semiconductor mono-

layers10,11 have attracted considerable interest. Upon decreasing
their size, mechanical resonators become increasingly sensitive
to adsorbed mass12−14 and external forces.15 These systems
hold promise for exploring a broad range of physical
phenomena, such as magnetic resonance imaging,16,17 surface
science,18 out-of-equilibrium thermodynamics,20 and light-
matter interaction.21 However, the efficient motion detection
of these small resonators remains a challenging task despite
intense efforts in improving detection methods over the past
decade.22−24,26−28 This has prevented the study of some of the
most fundamental properties of these systems, such as the time
evolution of the Brownian motion and other types of
displacement fluctuations of nanotube resonators.29−34

The displacement fluctuations of a resonator with a high
quality-factor are fully characterized by recording the time-
evolution of the two quadratures of motion. The displacement
x is given by

= Ω + Ωx t X t t X t t( ) ( )cos( ) ( )sin( )1 0 2 0 (1)

with X1 and X2 as the two quadratures, Ω0/2π is the mechanical
resonance frequency, and t is the time. The quadratures are
obtained via real-time demodulation of the motion signal,
which must resolve the vibrations at a rate much faster than the
mechanical resonance frequency. This condition has never been
achieved with resonators based on nanotubes, graphene, and
semiconductor monolayers due to insufficient sensitivity of the

tranduction schemes employed thus far. These include methods
based on electrical detection,22−24 optical interferometry,26,27

and scanning probe microscopy.28 The relatively poor efficiency
of these techniques is essentially explained by the weak
interaction overlap between the measurement probe (e.g.,
electric or optical fields) and the nanometer scale mechanical
resonator. With the advantage of much reduced interaction
volumes, electron microscopy has also been considered for the
study of the fluctuating behaviors in nanomechanical
resonators35 whereas long-term imaging is used for quantita-
tively characterizing the variance of thermally induced
mechanical motion. More recently, electron microscopy has
been utilized for ultrasensitive detection and manipulation of
resonant properties of nanomechanical resonators with pico-
gram effective masses.4

In this work, we push this novel e-beam nanoelectromechan-
ical approach for detecting the thermally induced fluctuations
of attogram-scale (10−21 kg) carbon nanotube resonators in
real-time for the first time. We focus the electron beam of a
scanning electron microscope (SEM) at a fixed position and
measure the intensity of the electrons scattered inelastically
from the nanotube. This allows high signal-to-noise detection
of thermally driven resonances at frequencies up to 10 MHz.
This also enables the full access to the real-time trajectories of
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the quadratures. We demonstrate that nanotube resonators
undergo thermally driven Brownian motion. That is, the
motion is driven by thermal noise with negligible electron beam
backaction noise. This new method also allows us to
simultaneously measure the time-evolution of two modes
polarized perpendicularly. The interaction between the electron
beam and the nanotube may be increased by depositing
amorphous carbon onto the nanotube. This results in increased
energy absorption that may yield to dynamical backaction
effects and notably to self-oscillating behaviors that are
observed in the present work. We demonstrate that the
electron beam of an SEM is a unique tool for addressing the
nature of the mechanical motion.
Motion Detection with a Focused Electron Beam. Our

detection scheme relies on coupling nanomechanical motion to
a focused beam of electrons.4,36 Electron beams can be focused
to spot sizes approaching the diameter of nanotube resonators,
ensuring a much higher interaction overlap compared to usual
capacitive or optical techniques used to detect nanomechanical
motion.22−27 The principle of the detection works as follows:4

The collisions between the electron beam and the nanotube
yield to the emission of so-called secondary electrons (SEs),
which result from inelastic scattering mechanisms. The
displacements of the nanotube within the electron beam create
a strong modulation of the secondary electrons current, whose
fluctuations are detected by means of a high bandwidth
scintillator. Note that previous measurements of nanotubes
using electron beams did not resolve the power spectrum nor
the real-time evolution of their mechanical fluctuations.35 The
principle of the experiment is depicted on Figure 1a. The
samples are mounted onto a three-dimensional positioning
stage hosted in a commercial SEM delivering a highly focused,
ultralow noise electron beam.4 Importantly, the SEM chamber
is thoroughly pumped in order to secure a high vacuum level,
preventing any significant electron-beam assisted spurious
deposition mechanism on the nanotube.37 The mechanical
resonators discussed below consist of single-clamped nanotubes
that are anchored at the edge of silicon wafers (Figure 1b,c).
We specifically consider three distinct devices, labeled D1 to

Figure 1. Experimental setup and systems. (a) Schematic of the experimental setup. The carbon nanotube resonators are mounted inside an SEM,
where their motion is detected via the SEs’ emission,4,36 whose fluctuations are collected at the video output of the SEM and further sent to a
spectrum analyzer. (b,c) Two SEM micrographs showing typical singly clamped carbon nanotube obtained with our chemical vapor deposition
(CVD) growing method. The catalyst (white flakes) is spread on the silicon substrate (darker parts), which is further CVD processed, resulting in
the growth of ultralow diameter carbon nanotubes, some of which are found to be singly clamped (highlighted in red, false colors).

Figure 2. Basic mechanical characterization using an SEM. (a) Magnified SEM micrograph showing a suspended carbon nanotube representative of
those used in the present work (device D1). The image is clearly blurred toward the upper end of the nanotube, characteristic of the thermal
excitation of its fundamental vibrational mode. (b) Intensity profile taken across the section denoted by the dashed arrow on panel a, obtained with
fast and slow scanning rate (left and right, respectively). The straight line corresponds to a Gaussian fit, enabling to extract the motion variance σth

2 ≃
(14 nm)2. (c) Power spectral density of the electromechanical signal. The SEM is operated in spot mode and the electron beam is being set at the
edge of the carbon nanotube. The resulting SEs’ fluctuations are collected at the SEM video output and further sent to a spectrum analyzer. Two
peak are observed around the fundamental resonance frequency Ωx/2π = 5.58 MHz and Ωy/2π = 6.33 MHz, corresponding to the two perpendicular
directions of vibration of the nanotube resonator.
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D3. This detection method can also be employed with doubly
clamped nanotubes but the results are not shown here.
We first operate the SEM in the conventional “scanning

mode” with the electron beam being scanned over the surface
of the sample and the SEs’ response simultaneously acquired.
Figure 2a shows a typical SEs image obtained by scanning a
suspended carbon nanoresonator representative of those
investigated in this work (D1). The image seems increasingly
blurred toward the upper end of the nanoresonator, which is
interpreted as a consequence of position noise.35 The carbon
nanotube (CNT) resonator can be described as a singly
clamped cantilever whose deformations are dominated by its
fundamental flexural mode according to Euler−Bernoulli beam
theory. Following the energy equipartition theorem, this mode
stores motional energy at thermal equilibrium, resulting in
random vibrations. When the latter are large compared to the
spatial extension of the electron beam, the integrated current

∫Δ = Δ
Δ

r t tI r t( , ) d ( , )
t

t
p

1
0 p becomes simply proportional to

the probability P(rp, Δt) to find the object at the electron beam
position rp within the integration time Δt (here I denotes the
SEs emission rate). Provided that the image integration time is
long with respect to the motion coherence time, the signal
becomes proportional to the asymptotic probability, that is, the
spatial probability density function (PDF) associated with the
position noise,38 = Δ∞

Δ →+∞
P r P r t( ) lim ( , )

t
p p . For a singly

clamped, unidimensional Euler−Bernoulli beam vibrating in
the scanning plane and at thermal equilibrium, this probability
is given by

π σ
= · σ

∞
−P r u r e e( ) ( )

1
2

r e
p p CNT

th

( . ) /2p 1
2

th
2

(2)

with eCNT and e1 respectively denoting the axis and vibrational
direction of the carbon nanotube resonator, u is its fundamental
mode shape39 and σth

2 is the thermal motion variance (the
origin of the referential being taken at the anchor point of the
resonator). Figure 2b shows two cross sections of Figure 2a
(black, dashed arrow) obtained with two distinct scanning rates,
corresponding to short and long electron beam exposure,
respectively. The cross sections confirm the Gaussian scaling of
the SEs emission rate and enable one to extract the same value
of the thermal motion variance (σth)

2 ≃ (14 nm)2, independent
from the exposure duration, showing that the nanomechanical
dynamics is negligibly affected by the electron beam as further
discussed below. Measurements on other nanotube cantilevers
show that σth remains constant upon rotating the nanotube
along its axis. This is because nanotube cantilevers feature two
fundamental modes polarized perpendicularly with similar
effective masses and similar resonant frequencies, so that the
variance of the projected thermal motion is independent of the
rotation angle.
To further establish the vibrational origin of this motion

imprecision, we turn the SEM into “spot mode”, where the
electron beam is fixed at a given position. We set the electron
beam at the tip of the resonator and acquire the SEs current
fluctuations using a spectrum analyzer4,36. Figure 2c shows two
peaks centered at Ω0/2π ≃ 5.58 and 6.33 MHz, consistent with
the expected resonant behavior. Rotating the positioning stage
with respect to the electron beam direction enables one to
selectively extinguish either of the peaks, which can be used in
order to address the corresponding direction of vibration. The
signal-to-noise ratio of the low-frequency resonance is 14 dB,
limited by broadband background scattering (linear spectral
decay, arising from the detector cutoff frequency of the SEM).
We verified that these peaks vanish when decoupling the

Figure 3. Real-time dynamics of a carbon nanotube resonator (device D2). (a) Motion quadrature spectrum of a free-running carbon nanotube
resonator. The quadratures of the electromechanical signal are demodulated at Ωd/2π = 356 kHz using an ultrafast lock-in amplifier while the
electron beam being set at the upper edge of the device. The spectrum is obtain as the Fourier transform of the 1 s-averaged autocorrelation of the
out-of-phase electromechanical quadrature. Two peaks are observed, associated with the motion imprecision in each vibrational direction of the
resonator. Straight lines correspond to Lorentzian adjustments (individual in purple and orange, dual incoherent sum in blue), enabling the
extraction of both mechanical resonance frequencies Ωx/2π = 356.577 kHz and Ωy/2π = 370.243 kHz and the values of the apparent quality factors
Q̃x = Ωx/δΩx = 541 and Q̃y = Ωy/δΩy = 591. (b) Motion spectrum associated with x(t). The data are obtained by demodulating the
electromechanical signal around frequency Ωx/2π and further computing the Fourier transform of its 1 s-averaged autocorrelation. The straight line
corresponds to a single Lorentzian fit with additional, incoherent background. (c) Same as (b) for y(t). (d) Electromechanical energy autocovariance
calculated as τ τ+ = ⟨ + − ⟨ ⟩ − ⟨ ⟩ ⟩t t I t I I t I( , ) ( ( ) )( ( ) )I

2 2 2 2
2 with I as the SEs current, t is the time, τ is the measurement delay time, and ⟨...⟩ is

statistical average. The straight line stands for the theoretical adjustment set by eq 3, yielding to the values of the intrinsic quality factors Qx = 582
and Qy = 559.
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electron beam from the nanoresonator, confirming their
motional origin.
The measurements in Figure 2b,c enable one to determine

the basic mechanical properties of the carbon nanotube
resonator. The motion variance can be written as a function
of the lateral spring constant k, σth

2 = kBT/k, yielding k ≃ 2.1 ×
10−5 Nm−1 with the temperature T = 300 K. On the other
hand, the effective mass meff is expressed in terms of the spring
constant and mechanical resonance frequency, meff = k/Ω0

2 ≃ 17
ag. From the values of the lateral spring constant and nanotube
length, the radius can be evaluated on the order of r ≃ 2 nm,
assuming that the nanotube contains one wall (Supporting
Information). Using the length and radius of the nanotube and
the mass density of pristine graphene, we obtain that meff ≃ 2.8
ag. The difference between this value and the mass measured
above is attributed to a thin layer of contamination adsorbed on
the nanotube.
As mentioned earlier, the above measurements are weakly

sensitive to e-beam-induced dynamical effects, which would
result in strong distortions of the motion PDF. Because of the
much reduced surface of the electron beam compared to the
motion variance, the average electrical power received by the
nanotube resonator strongly depends on the e-beam position
(see Supporting Information). To verify the impact of the
electron beam on the nanomechanical dynamics, we sub-
sequently image the nanotube resonator by setting the e-beam
dwell time td to short and extended values (td ≪ 2π/Γ0 and td
≫ 2π/Γ0, Figure 2b left and right, respectively). Short dwell
times enable to decrease the effective electrical power received
by the nanotube at the expense of decreased signal-to-noise
ratio, whereas extended dwell times correspond to higher e-
beam effective exposure. The obtained motion PDF remains
Gaussian and with very similar variances in both cases,
excluding any significant dynamical contribution arising from

the electron beam fluctuations. Additionally, the electron beam
may be responsible for asymmetric electrothermal dynamical
backaction effects, which either cool or amplify the nano-
mechanical vibrations depending on the side from which the
nanotube is exposed.4 However, Figure 2b shows that the
motion PDF remains symmetric at lower dwell time, which
indicates that dynamical backaction effects remain negligible. In
total, this study is compatible with thermally induced
mechanical fluctuations, corroborating previous studies having
addressed the temperature dependence of CNT random
vibrations in similar conditions.35

Damping Rate of Nanotube Resonators. The potential
of nanomechanical devices relies on their ultrasensitive
dynamical behavior, which requires the ability to operate
them close to their fundamental limits and in real-time.40,41 To
do so, we connect the scintillator output of the SEM to an
ultrafast lock-in amplifier, which we use for demodulating the
quadratures of the electromechanical signal around the
mechanical resonance frequency. Figure 3a shows the
fluctuations spectrum of the out-of-phase quadrature obtained
with device D2 with the demodulation frequency being set to
356 kHz. Two peaks are observed with comparable widths and
heights. Using the measured resonant frequency and the spatial
PDF measurement, we obtain σth

2 ≃ (31 nm)2 and k ≃ 4.8 ×
10−6 Nm−1. Figure 3b,c further show the spectrum of the
electromechanical signal as demodulated around each reso-
nance frequency. The data adjust very well to Lorentzian
models (plain lines), suggesting that the nanotube resonator
behaves as a linearly damped, two-dimensional harmonic
oscillator.
To address the origin of the observed mechanical line widths,

we compute the autocovariance of the energy of the
e l e c t r o m e c h a n i c a l s i g n a l

τ τ+ = ⟨ + − ⟨ ⟩ − ⟨ ⟩ ⟩t t I t I I t I( , ) ( ( ) )( ( ) )I
2 2 2 2 , with τ the

Figure 4. Motion statistics of a carbon nanotube resonator (device D2). (a-i) Time evolution of the motion quadratures for mode 1. (a-ii)
Corresponding real-time evolution of the position x(t). (a-iii) Quadratures cross-correlation for mode 1. (a-iv,v) Histograms of the normalized
quadratures associated with x(t). Straight lines are Gaussian curves with unit variance. (b) Same as (a) for mode 2. (c) Nanomechanical trajectory
(x(t), y(t)) in real-space. (d) Histogram of the nanomechanical trajectory (x(t), y(t)) in real-space. (e) Spatial correlations as a function of time. The
upper and lower curves stand for the imaginary and real parts of the spatial correlation function, respectively (see text).
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measurement delay time, and ⟨...⟩ statistical average. The
energy autocovariance has indeed the property to be insensitive
toward frequency noise (see Supporting Information), enabling
the pure extraction of the mechanical damping rates with the
additional benefit of minimal driving amplitude, therefore
avoiding possible nonlinear artifacts.42 For a linear, stationary
driven nondegenerate two-dimensional mechanical oscillator,
this energy autocovariance is independent of t and can be
shown to read as (see Supporting Information)

τ σ σ σ σ τ= + + ΔΩτ τ τ−Γ −Γ −Γ +Γg e g e g g e( ) 2 2 cosI x x y y x y x y
4 4 4 4 2 2 2 2 /2x y x y2

(3)

with ΔΩ/2π as the frequency splitting between the two modes

and with Γp, σp
2 = ⟨p2⟩, and = ∂

∂g I
pp

1
2

being the mechanical

damping rate, the motion variance, and the electromechanical
coupling rate associated with each vibrational direction (p ∈ {x,
y}), respectively. The terms on the first line of eq 3 identify to
the individual energy components associated with each mode,
whereas the second line simply corresponds to the acoustic beat
between the two motional polarizations. Figure 3d shows the
electromechanical energy autocovariance corresponding to the
spectrum shown on Figure 3a. The experimental data (dots)
are found to adjust very well to the theoretical model set by eq
3 (plain line).
It is interesting to compare the “apparent” quality factors Q̃p

= Ωp/δΩp obtained from the fits of the quadrature spectrum
(δΩp denoting the mechanical line width associated with each
vibrational direction, p ∈ {x, y}), to the “intrinsic” quality
factors Qp = Ωp/Γp, measured via the autocovariance of the
energy. The measurements presented on Figure 3a,d are
consecutively repeated a number of times and used for
extracting the corresponding damping parameters, yielding to
Q̃x = 412 ± 89, Q̃y = 570 ± 123, Qx = 583 ± 70, and Qy = 583
± 50. These values show no significant difference between the
apparent and intrinsic quality factors, which establishes that the
measured decoherence is dominated by dissipation mechanisms
in the carbon nanotube resonator. In other words, the Duffing
restoring force and the mode−mode coupling forces, which
arise from inertial nonlinear effects in singly clamped beams,43

are weak enough so that motional fluctuations do not induce
sizable dephasing.29,30

Motion Statistics of Nanotube Resonators. We now
turn our attention to the statistical analysis of nanomechanical
motion. We insist that this aspect is indispensable for resolving
the nature and origin of the vibrational state. Indeed,
fundamental differences in vibrations, such as those reported
in refs 21, 29, 44, and 45, can be resolved only by measuring

their motion quadrature distribution.46 Figure 4a-i (respectively
4b-i) shows the time evolution of the motion quadratures
(X1(t), X2(t)) of x (respectively (Y1(t), Y2(t)) of y), defined as
the cross-phase, slowly varying components of mechanical
motion, x(t) = X1(t)cos Ωxt + X2(t)sin Ωxt and y(t) = Y1(t)cos
Ωyt + Y2(t)sin Ωyt. The corresponding real-time displacements
x(t) and y(t) are shown on Figure 4a-ii,b-ii. Figure 4a-iii,b-iii
show the quadratures cross-correlation functions CX(τ) =
⟨X1(t)X2(t + τ)⟩ and CY(τ) = ⟨Y1(t)Y2(t + τ)⟩ associated with
each trajectory. These correlations are found to vanish below
the 10% level and can therefore be safely neglected. Figure 4a-
iv,v,b-iv,v show the histogram of the normalized motion
quadratures, which are all found to be Gaussian distributed
with unit variance (plain lines). In total, these measurements
show that the quadratures of the nanomechanical fluctuations
in each vibrational direction describe a Brownian motion,38

consistent with a two-dimensional mechanical resonator at
thermal equilibrium. These results establish that nonlinear
mechanical effects in singly clamped nanotube resonators at
room temperature remain weak. Figure 4c,d further shows the
corresponding motion trajectory and associated histogram in
real-space, confirming a bivariate, symmetric normal distribu-
tion of the position noise.
To complete our study, we evaluate the spatial correlations

defined as 2σxσyCxy(τ) = ⟨{X1(t) + iX2(t)}{Y1(t + τ) − iY2(t +
τ)}⟩. The result is reported on Figure 4e, where the real and
imaginary parts are shown separately. The very low level of
correlations indicates that potential landscape nonlinearities
have negligible effects, to first order.21 Finally, we note that the
two-dimensional, nondegenerate nature of suspended nano-
cantilevers provides them with the peculiar property to develop
short-term spatial correlations under random external driving,
such as the one resulting from measurement backaction. These
correlations manifest through strong distortions in the
electromechanical spectrum,47 which are not observed in our
measurements (see Figure 3a and Supporting Information).
This indicates the absence of any random external driving
source and in particular confirms the innocuity of the electron
beam toward the vibrational state.

Self-Oscillation of Nanotube Resonators. The above
presented results have been obtained under optimized
experimental conditions with e-beam induced dynamical effects
being kept negligible (see Figure 2). In particular, it is essential
to maintain excellent vacuum conditions in order to avoid
unwanted contamination processes, which are enhanced under
e-beam exposure (ref 37; see also Supporting Information].
The deposited material (e.g., amorphous carbon) may indeed
act as an efficient energy absorber, yielding noninstantaneous

Figure 5. E-beam induced dynamical backaction (device D3). (a) Mechanical spectra for a damped thermal state (broad) and a self-oscillating state
(narrow). The electronic noise background level (gray). (b) A hole in the phase-space of the associated quadratures is observed, indicating a self-
oscillating mechanical state. (c) Histograms of the motion quadratures presenting non-Gaussian statistics.
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heating of the CNT resonator. An important aspect of our work
relies in the fact that we are able to straightforwardly address
the dynamical consequences of such effects.
It has been previously shown that electro/opto-mechanical

coupling can change the effective temperature of the resonator
in a cavity-free scheme.4,19 The carbon nanotube motion
evolves in a delayed force gradient50 leading to electromechani-
cally induced dynamical effects, which may alter the mechanical
behavior. Figure 5a shows two mechanical spectra acquired
with the e-beam being positioned at two distinct locations of an
amorphous carbon “contamination island” grown at the edge of
the resonator (device D3). Efficient cooling (broad curve) and
heating (narrow curve) of a carbon nanotube resonator are
consequently observed.
A mechanical resonator undergoing ponderomotive heating

is susceptible to enter the instable regime of self-oscillation.51 In
this case, the mere mechanical spectrum may not allow
distinguishing between a stable and an instable regime due
notably to the unavoidable presence of frequency noise. Here,
we show that by extracting in real-time the motion quadratures,
we are able to unveil signatures in the phase-space trajectory
indicating a self-oscillation.
Figure 5b shows a hole in the PDF suggesting oscillations of

the associated motion quadratures. In an instable regime, the
nanotube is undergoing self-sustained oscillations rather than
the ordinary thermal random walk. The phase-space trajectory
is then confined in a well-defined region with a nonzero mean
amplitude value. The demodulation frequency detuning and the
residual frequency noise lead to the exploration of all four
phase-space quadrants. Similarly, Figure 5c-i,ii depict the
histograms of the motion quadratures, both presenting a non-
Gaussian distribution as it would be expected for a nonthermal
state.
Discussion. The present work demonstrates that our novel

measurement method enables the detection of the vibrations of
nanotube-based resonators with masses as low as 17 ag. The
measurement of such ultralow mass resonators raises the
question of the limits of our approach. Besides the strong,
subnanometer confinement of the electron probe, the other key
element of our scheme lies in the layout of the device. The
absence of any electron scatterer within the immediate vicinity
of the free-standing nano-object enables a very high SEs’
contrast, which is at the origin of the high motion sensitivity
(see Supporting Information).
On a more fundamental side, the measurement is responsible

for a random backaction that may affect the vibrational
fluctuations of the measured objects.48 While such effects are
not observed in the present work (where the investigated
devices are driven by thermal forces ranging between (2
aNHz−1/2)2 and (10 aNHz−1/2)2), they may become significant
for nanotube resonators with higher quality factors. Indeed, e-
beam quantum backaction acting on thick semiconducting
scatterers has recently been evaluated to be on the order of (1
aNHz−1/2)2 under standard operating conditions,4 which
should be in reach, for example, at low temperature where
the mechanical quality factors are found to be enhanced by
several orders of magnitude.15 Though certainly representing a
limit from the sensing point of view, this points out that singly
clamped nanotube resonators are devices of choice for probing
and controlling quantum properties of electronic beams.
Lastly, we would like to once more attract the attention on a

very important and useful characteristic of our singly clamped
suspended nanotube resonators, that is, their two-dimensional

vibrational nature. This property makes these resonators
sensitive to spatially induced motion correlations, resulting in
strong distortions in their electromechanical spectrum.19 These
signatures (such as the non-Lorentzian resonance lineshapes in
response to an external piezo drive, see Supporting
Information) enable one to address the presence and nature
of external driving forces with no further calibration being
required. In particular, it is interesting to note that these
nanomechanical objects are expected to surpass the limits set
by quantum backaction in principle, for example, by parametric
driving44 or implementing multimode mechanical detection
scheme,47 which has so far never been observed and would
represent an important step from the perspective of Quantum
Measurement. This two-dimensional behavior has also been
highlighted as a strong asset in the context of ultrasensitive
nanomechanical detection, related to the corresponding ability
to self-discriminate the external noise mode in phase-coherent
measurements,12,49 which will be highly beneficial to our
systems.

Conclusion. We have shown that the focused electron-
beam of a SEM operated in spot mode allows the detection of
the noise dynamics of attogram-scale singly clamped suspended
carbon nanotubes resonators in real-time. We have demon-
strated that an SEM operated in spot mode behaves as a
stereoscope with our devices, enabling the tridimensional
reconstruction of their motion fluctuations in real-time. We
have presented a detailed analysis of the two-dimensional noise
trajectories both in space and time and have shown that such
small objects behave as Brownian particles evolving in a two-
dimensional harmonic potential. Our work paves the way
toward the exploration of novel thermodynamic regimes at
scales which have been so far inaccessible experimentally.

Methods. Sample Fabrication. The nanotubes used in this
work are grown via chemical vapor deposition on silicon
substrates. Nanotubes are attached to the surface of the
substrate by van der Waals forces. Some of the nanotubes
extend beyond the substrate edges, thus forming singly clamped
resonators (Figure 1b,c) with lengths in the 100 nm to 10 μm
range.
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