1,067 research outputs found
Prospects for improving the sensitivity of KAGRA gravitational wave detector
KAGRA is a new gravitational wave detector which aims to begin joint observation with Advanced LIGO and Advanced Virgo from late 2019. Here, we present KAGRA's possible upgrade plans to improve the sensitivity in the decade ahead. Unlike other state-of-the-art detectors, KAGRA requires different investigations for the upgrade since it is the only detector which employs cryogenic cooling of the test mass mirrors. In this paper, investigations on the upgrade plans which can be realized by changing the input laser power, increasing the mirror mass, and injecting frequency dependent squeezed vacuum are presented. We show how each upgrade affects to the detector frequency bands and also discuss impacts on gravitational-wave science. We then propose an effective progression of upgrades based on technical feasibility and scientific scenarios
Structure and mechanism of human DNA polymerase η
The variant form of the human syndrome xeroderma pigmentosum (XPV) is caused by a deficiency in DNA polymerase eta (Pol eta), a DNA polymerase that enables replication through ultraviolet-induced pyrimidine dimers. Here we report high-resolution crystal structures of human Pol eta at four consecutive steps during DNA synthesis through cis-syn cyclobutane thymine dimers. Pol eta acts like a 'molecular splint' to stabilize damaged DNA in a normal B-form conformation. An enlarged active site accommodates the thymine dimer with excellent stereochemistry for two-metal ion catalysis. Two residues conserved among Pol eta orthologues form specific hydrogen bonds with the lesion and the incoming nucleotide to assist translesion synthesis. On the basis of the structures, eight Pol eta missense mutations causing XPV can be rationalized as undermining the molecular splint or perturbing the active-site alignment. The structures also provide an insight into the role of Pol eta in replicating through D loop and DNA fragile sites
Substrate-transferred GaAs/AlGaAs crystalline coatings for gravitational-wave detectors: A review of the state of the art
In this Perspective we summarize the status of technological development for
large-area and low-noise substrate-transferred GaAs/AlGaAs (AlGaAs) crystalline
coatings for interferometric gravitational-wave (GW) detectors. These topics
were originally presented in a workshop{\dag} bringing together members of the
GW community from the laser interferometer gravitational-wave observatory
(LIGO), Virgo, and KAGRA collaborations, along with scientists from the
precision optical metrology community, and industry partners with extensive
expertise in the manufacturing of said coatings. AlGaAs-based crystalline
coatings present the possibility of GW observatories having significantly
greater range than current systems employing ion-beam sputtered mirrors. Given
the low thermal noise of AlGaAs at room temperature, GW detectors could realize
these significant sensitivity gains, while potentially avoiding cryogenic
operation. However, the development of large-area AlGaAs coatings presents
unique challenges. Herein, we describe recent research and development efforts
relevant to crystalline coatings, covering characterization efforts on novel
noise processes, as well as optical metrology on large-area (~10 cm diameter)
mirrors. We further explore options to expand the maximum coating diameter to
20 cm and beyond, forging a path to produce low-noise AlGaAs mirrors amenable
to future GW detector upgrades, while noting the unique requirements and
prospective experimental testbeds for these novel materials.Comment: 13pages, 3 figure
Tsunami generation of the 1993 Hokkaido Nansei-Oki earthquake
Heterogeneous fault motion of the 1993 Hokkaido Nansei-Oki earthquake is studied by using seismic, geodetic and tsunami data, and the tsunami generation from the fault model is examined. Seismological analyses indicate that the focal mechanism of the first 10 s, when about a third of the total moment was released, is different from the overall focal mechanism. A joint inversion of geodetic data on Okushiri Island and the tide gauge records in Japan and Korea indicates that the largest slip, about 6 m, occurred in a small area just south of the epicenter. This corresponds to the initial rupture on a fault plane dipping shallowly to the west. The slip on the northernmost subfault, which is dipping to the east, is about 2 m, while the slips on the southern subfaults, which are steeply dipping to the west, are more than 3 m. Tsunami heights around Okushiri Island are calculated from the heterogeneous fault model using different grid sizes. Computation on the smaller grids produces large tsunami height that are closer to the observed tsunami runup heights. Tsunami propagation in the nearly closed Japan Sea is examined as the free oscillation of the Japan Sea. The excitation of the free oscillation by this earthquake is smaller than that by the 1964 Niigata or 1983 Japan Sea earthquake.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43222/1/24_2004_Article_BF00874395.pd
Identification of a myometrial molecular profile for dystocic labor
<p>Abstract</p> <p>Background</p> <p>The most common indication for cesarean section (CS) in nulliparous women is dystocia secondary to ineffective myometrial contractility. The aim of this study was to identify a molecular profile in myometrium associated with dystocic labor.</p> <p>Methods</p> <p>Myometrial biopsies were obtained from the upper incisional margins of nulliparous women undergoing lower segment CS for dystocia (n = 4) and control women undergoing CS in the second stage who had demonstrated efficient uterine action during the first stage of labor (n = 4). All patients were in spontaneous (non-induced) labor and had received intrapartum oxytocin to accelerate labor. RNA was extracted from biopsies and hybridized to Affymetrix HuGene U133A Plus 2 microarrays. Internal validation was performed using quantitative SYBR Green Real-Time PCR.</p> <p>Results</p> <p>Seventy genes were differentially expressed between the two groups. 58 genes were down-regulated in the dystocia group. Gene ontology analysis revealed 12 of the 58 down-regulated genes were involved in the immune response. These included (ERAP2, (8.67 fold change (FC)) HLA-DQB1 (7.88 FC) CD28 (2.60 FC), LILRA3 (2.87 FC) and TGFBR3 (2.1 FC)) Hierarchical clustering demonstrated a difference in global gene expression patterns between the samples from dystocic and non-dystocic labours. RT-PCR validation was performed on 4 genes ERAP2, CD28, LILRA3 and TGFBR3</p> <p>Conclusion</p> <p>These findings suggest an underlying molecular basis for dystocia in nulliparous women in spontaneous labor. Differentially expressed genes suggest an important role for the immune response in dystocic labor and may provide important indicators for new diagnostic assays and potential intrapartum therapeutic targets.</p
- …