200 research outputs found
Multi-Targeting Bioactive Compounds Extracted from Essential Oils as Kinase Inhibitors
Essential oils (EOs) are popular in aromatherapy, a branch of alternative medicine that claims their curative effects. Moreover, several studies reported EOs as potential anti-cancer agents by inducing apoptosis in different cancer cell models. In this study, we have considered EOs as a potential resource of new kinase inhibitors with a polypharmacological profile. On the other hand, computational methods offer the possibility to predict the theoretical activity profile of ligands, discovering dangerous off-targets and/or synergistic effects due to the potential multi-target action. With this aim, we performed a Structure-Based Virtual Screening (SBVS) against X-ray models of several protein kinases selected from the Protein Data Bank (PDB) by using a chemoinformatics database of EOs. By evaluating theoretical binding affinity, 13 molecules were detected among EOs as new potential kinase inhibitors with a multi-target profile. The two compounds with higher percentages in the EOs were studied more in depth by means Induced Fit Docking (IFD) protocol, in order to better predict their binding modes taking into account also structural changes in the receptor. Finally, given its good binding affinity towards five different kinases, cinnamyl cinnamate was biologically tested on different cell lines with the aim to verify the antiproliferative activity. Thus, this work represents a starting point for the optimization of the most promising EOs structure as kinase inhibitors with multi-target feature
Biological Functions of Mammalian Nit1, the Counterpart of the Invertebrate NitFhit Rosetta Stone Protein, a Possible Tumor Suppressor
The "Rosetta Stone" hypothesis proposes that the existence of a fusion protein in some organisms predicts that the separate polypeptides function in the same biochemical pathway in other organisms and may physically interact. In Drosophila melanogaster and Caenorhabditis elegans, NitFhit protein is composed of two domains, a fragile histidine triad homolog and a bacterial and plant nitrilase homolog. We assessed the biological effects of mammalian Nit1 expression in comparison with Fhit and observed that: 1) Nit1 expression was observed in most normal tissues and overlapped partially with Fhit expression; 2) Nit1-deficient mouse kidney cells exhibited accelerated proliferation, resistance to DNA damage stress, and increased cyclin D1 expression; 3) cyclin D1 was up-regulated in Nit1 null mammary gland and skin; 4) Nit1 overexpression induced caspase-dependent apoptosis in vitro; and 5) Nit1 allele deficiency led to increased incidence of N-nitrosomethylbenzylamine-induced murine forestomach tumors. Thus, the biological effects of Nit1 expression are similar to Fhit effects. Adenoviruses carrying recombinant NIT1 and FHIT induced apoptosis in Fhit- and Nit1-deficient cells, respectively, suggesting that Nit1-Fhit interaction is not essential for function of either protein. The results suggest that Nit1 and Fhit share tumor suppressor signaling pathways, while localization of the NIT1 gene at a stable, rather than fragile, chromosome site explains the paucity of gene alterations and in frequent loss of expression of the NIT1 gene in human malignancies
Transfer of results of the MAECI MINCYT proyect to areas impacted with heavy metals from volcanism
Poster presentado en:18 Encuentro del Centro Internacional de Ciencias de la Tierra (E-ICES-18) Mendoza, Argentina. 21-24 noviembre 202
FHIT gene therapy prevents tumor development in Fhit-deficient mice
The tumor suppressor gene FHIT spans a common fragile site and is highly susceptible to environmental carcinogens. FHIT inactivation and loss of expression is found in a large fraction of premaligant and malignant lesions. In this study, we were able to inhibit tumor development by oral gene transfer, using adenoviral or adenoassociated viral vectors expressing the human FHIT gene, in heterozygous Fhit+/- knockout mice, that are prone to tumor development after carcinogen exposure. We therefore suggest that FHIT gene therapy could be a novel clinical approach not only in treatment of early stages of cancer, but also in prevention of human cancer
T-Cell Leukemia/Lymphoma 1 (TCL1): An Oncogene Regulating Multiple Signaling Pathways
Almost 30 years ago, Carlo Croce's group discovered the T-Cell Leukemia/Lymphoma 1A oncogene (TCL1A or TCL1). TCL1 protein is normally expressed in fetal tissues and early developmental stage lymphocytes. Its expression is deregulated in chronic lymphocytic leukemia (B-CLL) and most lymphomas. TCL1 plays a central role in lymphomagenesis as a co-activator of AKT kinases and other recently elucidated interacting protein partners. These include ATM, HSP70 and TP63, which were all confirmed as binding partners of TCL1 from co-immunoprecipitation experiments utilizing endogenously expressed proteins. The nature of these interactions highlighted the role of TCL1 in enhancing multiple signaling pathways, including PI3K and NF-κB. Based on its role in the aforementioned pathways and, despite the lack of a well-defined enzymatic activity, TCL1 is considered a potential therapeutic target for TCL1-positive hematological malignancies. This perspective will provide an overview of TCL1A and its interacting partners
Variables associated with odds of finishing and finish time in a 161-km ultramarathon
We sought to determine the degree to which age, sex, calendar year, previous event experience and ambient race day temperature were associated with finishing a 100-mile (161-km) trail running race and with finish time in that race. We computed separate generalized linear mixed-effects regression models for (1) odds of finishing and (2) finish times of finishers. Every starter from 1986 to 2007 was used in computing the models for odds of finishing (8,282 starts by 3,956 individuals) and every finisher in the same period was included in the models for finish time (5,276 finishes). Factors associated with improved odds of finishing included being a first-time starter and advancing calendar year. Factors associated with reduced odds of finishing included advancing age above 38 years and warmer weather. Beyond 38 years of age, women had worse odds of finishing than men. Warmer weather had a similar effect on finish rates for men and women. Finish times were slower with advancing age, slower for women than men, and less affected by warm weather for women than for men. Calendar year was not associated with finish time after adjustment for other variables
Hipk2 cooperates with p53 to suppress γ-ray radiation-induced mouse thymic lymphoma
A genome-wide screen for genetic alterations in radiation-induced thymic lymphomas generated from p53+/− and p53−/− mice showed frequent loss of heterozygosity (LOH) on chromosome 6. Fine mapping of these LOH regions revealed three non-overlapping regions, one of which was refined to a 0.2 Mb interval that contained only the gene encoding homeobox-interacting protein kinase 2 (Hipk2). More than 30% of radiation-induced tumors from both p53+/− and p53−/− mice showed heterozygous loss of one Hipk2 allele. Mice carrying a single inactive allele of Hipk2 in the germline were susceptible to induction of tumors by γ-radiation, but most tumors retained and expressed the wild-type allele, suggesting that Hipk2 is a haploinsufficient tumor suppressor gene for mouse lymphoma development. Heterozygous loss of both Hipk2 and p53 confers strong sensitization to radiation-induced lymphoma. We conclude that Hipk2 is a haploinsufficient lymphoma suppressor gene
- …