5 research outputs found

    Modelling polarization properties of comet 1P/Halley using a mixture of compact and aggregate particles

    Full text link
    Recently, the result obtained from `Stardust' mission suggests that the overall ratio of compact to aggregate particles is 65:35 (or 13:7) for Comet 81P/Wild 2 (Burchell et al. 2008). In the present work, we propose a model which considers cometary dust as a mixture of compact and aggregate particles, with composition of silicate and organic. We consider compact particles as spheroidal particles and aggregates as BCCA and BAM2 aggregate with some size distribution. For modeling Comet 1P/ Halley, the power-law size distribution n(a)= a^{-2.6}, for both compact and aggregate particles is taken. We take a mixture of BAM2 and BCCA aggregates with a lower and upper cutoff size around 0.20μm\mu m and 1μm\mu m. We also take a mixture of prolate, spherical and oblate compact particles with axial ratio (E) from 0.8 to 1.2 where a lower and upper cutoff size around 0.1μm\mu m and 10μm\mu m are taken. Using T-matrix code, the average simulated polarization curves are generated which can best fit the observed polarization data at the four wavelengths λ\lambda = 0.365μm\mu m, 0.485μm\mu m, 0.670μm\mu m and 0.684μm\mu m. The suitable mixing percentage of aggregates emerging out from the present modeling corresponds to 50% BAM2 and 50% BCCA particles and silicate to organic mixing percentage corresponds to 78% silicate and 22% organic in terms of volume. The present model successfully reproduces the observed polarization data, especially the negative branch, more effectively as compared to other work done in the past. It is found that among the aggregates, the BAM2 aggregate plays a major role, in deciding the cross-over angle and depth of negative polarization branch.Comment: 7 pages, 5 figures (accepted for publication in MNRAS on May 4, 2011

    <b style="">Wild edible fruits of Tripura</b>

    No full text
    302-305Tripura is one of the eight jewels of the North-Eastern States and the state weather is characterized by subtropical, warm and humid condition, which favours the luxuriant growth of various edible fruit crops. In addition to the major fruits grown (Mango, Litchi, Pineapple, Orange, Banana and Jackfruit) in this state, there are many edible fruits exist naturally in forest as well as in cultivable areas. These fruit plants are playing a vital role in providing nutritional and economic security to the poor masses in rural areas but the commercial importance and market value of these wild fruits is unknown to them.&nbsp; This paper lists the wild edible fruits and their uses for further exploratio

    Chemotherapy and tumor microenvironment of pancreatic cancer

    No full text
    corecore