37 research outputs found

    Tribological performance of an H-DLC coating prepared by PECVD

    Get PDF
    Carbon-based coatings are of wide interest due to their application in machine elements subjected to continuous contact where fluid lubricant films are not permitted. This paper describes the tribological performance under dry conditions of duplex layered H-DLC coating sequentially deposited by microwave excited plasma enhanced chemical vapour deposition on AISI 52100 steel. The architecture of the coating comprised Cr, WC, and DLC (a-C:H) with a total thickness of 2.8 μm and compressive residual stress very close to 1 GPa. Surface hardness was approximately 22 GPa and its reduced elastic modulus around 180 GPa. Scratch tests indicated a well adhered coating achieving a critical load of 80 N. The effect of normal load on the friction and wear behaviours were investigated with steel pins sliding against the actual coating under dry conditions at room temperature (20 ± 2°C) and 35-50% RH. The results show that coefficient of friction of the coating decreased from 0.21 to 0.13 values with the increase in the applied loads (10-50 N). Specific wear rates of the surface coating also decrease with the increase in the same range of applied loads. Maximum and minimum values were 14 × 10-8 and 5.5 × 10-8 mm-3/N m, respectively. Through Raman spectroscopy and electron microscopy it was confirmed the carbon-carbon contact, due to the tribolayer formation on the wear scars of the coating and pin. In order to further corroborate the experimental observations regarding the graphitisation behaviour, the existing mathematical relationships to determine the graphitisation temperature of the coating/steel contact as well as the flash temperature were used

    Effect of Processing on Microstructure and Physical Properties of Three Nickel-Based Superalloys with Different Hardening Mechanisms

    No full text
    The nickel-based superalloys Inconel alloy 600, Udimet alloy 720, and Inconel alloy 718 were produced by electron beam melting (EBM), casting, and directional solidification (DS). The distance between dendrites and the size of the precipitates indicated the difference in solidification rates between the three processes. In this study, the solidification rate was fastest with EBM, closely followed by casting, whereas it was much slower with DS. In the directional solidified materials the < 100 > direction was the fastest and thus, preferred growth direction. The EBM samples show a sharp (001)[100] texture in the building direction and in the two scanning directions of the electron beam. Macrosegregation was observed in some cast and directionally solidified samples, but not in the EBM samples. The melting temperatures are in good agreement with literature and the narrow melting interval of IN600 compare to UD720 and IN718 might reduce the risk of incipient melting during EBM processing. Porosity was observed in the EBM samples and the reasons are discussed. However, EBM seems to be a feasible process route to produce nickel-based superalloys with well-defined texture, no macrosegregation and a rapidly solidified microstructure

    COPGLOW and XPS investigation of recycled metal powder for selective laser melting

    No full text
    \ua9 2017 Institute of Materials, Minerals and Mining Published by Taylor & Francis on behalf of the Institute.The purpose of this paper is to compare, in terms of depth composition profile, a recycled hastelloy X powder and a virgin powder of the same alloy. We compare also the COPGLOW (compacted powder glow discharge analysis) method to the more established XPS (X-ray photoelectron spectroscopy) technique, in terms of similarity in reported elemental contents. A good match between the two methods was obtained on the surface of the powder particles (using an etching depth of 1 nm). Similar oxide layer thickness, of about 0.5–1 nm, was found on both powders by COPGLOW. Oxidation sensitive elements, such as Cr, were found on the surfaces by both XPS and COPGLOW on both powders. Surface content of Si appears to have decreased during use in selective laser melting. Finally, the two methods did not otherwise reveal any unexpected features in the depth profiles

    The Effect of Location and Post-treatment on the Microstructure of EBM-Built Alloy 718

    Get PDF
    Additive manufacturing (AM) of Ni-based superalloys such as Alloy 718 may obviate the need for difficult machining and welding operations associated with geometrically intricate parts, thus potentially expanding design possibilities and facilitating cost-effective manufacture of complex components. However, processing AM builds completely free from defects, which may impair mechanical properties such as fatigue and ductility, is challenging. Anisotropic properties, microstructural heterogeneities and local formation of undesired phases are additional concerns that have motivated post-treatment of AM builds. This work investigates the microstructural changes associated with post-treatment of Alloy 718 specimens produced by Electron Beam Melting (EBM) for as-built microstructures at 3 build heights: near base plate, in the middle of build and near the top of the build. Two different post-treatment conditions, hot isostatic pressing (HIP) alone and a combined HIP with solutionising and two-step aging were examined and compared to the results for the as-built condition. The influence of various post-treatments on minor phase distributions (δ, γ″, carbides), overall porosity, longitudinal grain widths and Vickers microhardness was considered. The HIP treatment led to significant reduction in overall porosity and dissolution of δ phase, which led to appreciable grain growth for both post-treatment conditions. The variation in hardness noted as a function of build height for the as-built specimens was eliminated after post-treatment. Overall, the hardness was found to decrease after HIP and increase after the full HIP, solutionising and aging treatment, which was attributed to dissolution of γ″ during HIP and its re-precipitation in subsequent heat treatment steps
    corecore