24 research outputs found

    Inhibition of Lassa Virus Glycoprotein Cleavage and Multicycle Replication by Site 1 Protease-Adapted α1-Antitrypsin Variants

    Get PDF
    The virus family Arenaviridae includes several hemorrhagic fever causing agents such as Lassa, Guanarito, Junin, Machupo, and Sabia virus that pose a major public health concern to the human population in West African and South American countries. Current treatment options to control fatal outcome of disease are limited to the ribonucleoside analogue ribavirin, although its use has some significant limitations. The lack of effective treatment alternatives emphasizes the need for novel antiviral therapeutics to counteract these life-threatening infections. Maturation cleavage of the viral envelope glycoprotein by the host cell proprotein convertase site 1 protease (S1P) is critical for infectious virion production of several pathogenic arenaviruses. This finding makes this protease an attractive target for the development of novel anti-arenaviral therapeutics. We demonstrate here that highly selective S1P-adapted α1-antitrypsins have the potential to efficiently inhibit glycoprotein processing, which resulted in reduced Lassa virus replication. Our findings suggest that S1P should be considered as an antiviral target and that further optimization of modified α1-antitrypsins could lead to potent and specific S1P inhibitors with the potential for treatment of certain viral hemorrhagic fevers

    Insertion of a multibasic cleavage site in the haemagglutinin of human influenza H3N2 virus does not increase pathogenicity in ferrets

    No full text
    A multibasic cleavage site (MBCS) in the haemagglutinin (HA) protein of influenza A virus is a key determinant of pathogenicity in chickens, and distinguishes highly pathogenic avian influenza (HPAI) viruses from low pathogenic avian influenza viruses (LPAI). An MBCS has only been detected in viruses of the H5 and H7 subtypes. Here we investigated the phenotype of a human H3N2 virus with an MBCS in HA. Insertion of an MBCS in the H3N2 virus resulted in cleavage of HA and efficient replication in Madin-Darby canine kidney cells in the absence of exogenous trypsin in vitro, similar to HPAI H5N1 virus. However, studies in ferrets demonstrated that insertion of the MBCS into HA did not result in increased virus shedding, cellular host range, systemic replication or pathogenicity, as compared with wild-type virus. This study indicates that acquisition of an MBCS alone is insufficient to increase pathogenicity of a prototypical seasonal human H3N2 virus

    Avian influenza: virology, diagnosis and surveillance

    No full text
    Avian influenza virus (AIV) is the causative agent of a zoonotic disease that affects populations worldwide with often devastating economic and health consequences. Most AIV subtypes cause little or no disease in waterfowl, but outbreaks in poultry can be associated with high mortality. Although transmission of AIV to humans occurs rarely and is strain dependent, the virus has the ability to mutate or reassort into a form that triggers a life-threatening infection. The constant emergence of new influenza strains makes it particularly challenging to predict the behavior, spread, virulence or potential for human-to-human transmission. Because it is difficult to anticipate which viral strain or what location will initiate the next pandemic, it is difficult to prepare for that event. However, rigorous implementation of biosecurity, vaccination and education programs can minimize the threat of AIV. Global surveillance programs help record and identify newly evolving and potentially pandemic strains harbored by the reservoir host
    corecore