1,975 research outputs found

    Nearly degenerate heavy sterile neutrinos in cascade decay: mixing and oscillations

    Get PDF
    Some extensions beyond the Standard Model propose the existence of nearly degenerate heavy sterile neutrinos. If kinematically allowed these can be resonantly produced and decay in a cascade to common final states. The common decay channels lead to mixing of the heavy sterile neutrino states and interference effects. We implement non-perturbative methods to study the dynamics of the cascade decay to common final states, which features similarities but also noteworthy differences with the case of neutral meson mixing. We show that mixing and oscillations among the nearly degenerate sterile neutrinos can be detected as \emph{quantum beats} in the distribution of final states produced from their decay. These oscillations would be a telltale signal of mixing between heavy sterile neutrinos. We study in detail the case of two nearly degenerate sterile neutrinos produced in the decay of pseudoscalar mesons and decaying into a purely leptonic "visible" channel: Îœh→e+e−Μa\nu_h \rightarrow e^+ e^- \nu_a. Possible cosmological implications for the effective number of neutrinos NeffN_{eff} are discussed.Comment: updated references, more comments, same results, published version. arXiv admin note: text overlap with arXiv:1406.573

    On Preferred Axes in WMAP Cosmic Microwave Background Data after Subtraction of the Integrated Sachs-Wolfe Effect

    Get PDF
    There is currently a debate over the existence of claimed statistical anomalies in the cosmic microwave background (CMB), recently confirmed in Planck data. Recent work has focussed on methods for measuring statistical significance, on masks and on secondary anisotropies as potential causes of the anomalies. We investigate simultaneously the method for accounting for masked regions and the foreground integrated Sachs-Wolfe (ISW) signal. We search for trends in different years of WMAP CMB data with different mask treatments. We reconstruct the ISW field due to the 2 Micron All-Sky Survey (2MASS) and the NRAO VLA Sky Survey (NVSS) up to l=5, and we focus on the Axis of Evil (AoE) statistic and even/odd mirror parity, both of which search for preferred axes in the Universe. We find that removing the ISW reduces the significance of these anomalies in WMAP data, though this does not exclude the possibility of exotic physics. In the spirit of reproducible research, all reconstructed maps and codes will be made available for download at http://www.cosmostat.org/anomaliesCMB.html.Comment: Figure 1-2 and Tables 1, D.1, D.2 updated. Main conclusions unchanged. Accepted for publication in A&A. In the spirit of reproducible research, all statistical and sparse inpainting codes as well as resulting products which constitute main results of this paper will be made public here: http://www.cosmostat.org/anomaliesCMB.htm

    3D galaxy clustering with future wide-field surveys: Advantages of a spherical Fourier-Bessel analysis

    Get PDF
    Upcoming spectroscopic galaxy surveys are extremely promising to help in addressing the major challenges of cosmology, in particular in understanding the nature of the dark universe. The strength of these surveys comes from their unprecedented depth and width. Optimal extraction of their three-dimensional information is of utmost importance to best constrain the properties of the dark universe. Although there is theoretical motivation and novel tools to explore these surveys using the 3D spherical Fourier-Bessel (SFB) power spectrum of galaxy number counts Cℓ(k,kâ€Č)C_\ell(k,k^\prime), most survey optimisations and forecasts are based on the tomographic spherical harmonics power spectrum Cℓ(ij)C^{(ij)}_\ell. We performed a new investigation of the information that can be extracted from the tomographic and 3D SFB techniques by comparing the forecast cosmological parameter constraints obtained from a Fisher analysis in the context of planned stage IV wide-field galaxy surveys. The comparison was made possible by careful and coherent treatment of non-linear scales in the two analyses. Nuisance parameters related to a scale- and redshift-dependent galaxy bias were also included for the first time in the computation of both the 3D SFB and tomographic power spectra. Tomographic and 3D SFB methods can recover similar constraints in the absence of systematics. However, constraints from the 3D SFB analysis are less sensitive to unavoidable systematics stemming from a redshift- and scale-dependent galaxy bias. Even for surveys that are optimised with tomography in mind, a 3D SFB analysis is more powerful. In addition, for survey optimisation, the figure of merit for the 3D SFB method increases more rapidly with redshift, especially at higher redshifts, suggesting that the 3D SFB method should be preferred for designing and analysing future wide-field spectroscopic surveys.Comment: 12 pages, 6 Figures. Python package for cosmological forecasts available at https://cosmicpy.github.io . Updated figures. Matches published versio

    Low-l CMB Analysis and Inpainting

    Full text link
    Reconstruction of the CMB in the Galactic plane is extremely difficult due to the dominant foreground emissions such as Dust, Free-Free or Synchrotron. For cosmological studies, the standard approach consists in masking this area where the reconstruction is not good enough. This leads to difficulties for the statistical analysis of the CMB map, especially at very large scales (to study for e.g., the low quadrupole, ISW, axis of evil, etc). We investigate in this paper how well some inpainting techniques can recover the low-ℓ\ell spherical harmonic coefficients. We introduce three new inpainting techniques based on three different kinds of priors: sparsity, energy and isotropy, and we compare them. We show that two of them, sparsity and energy priors, can lead to extremely high quality reconstruction, within 1% of the cosmic variance for a mask with Fsky larger than 80%.Comment: Submitte

    Planck CMB Anomalies: Astrophysical and Cosmological Secondary Effects and the Curse of Masking

    Full text link
    Large-scale anomalies have been reported in CMB data with both WMAP and Planck data. These could be due to foreground residuals and or systematic effects, though their confirmation with Planck data suggests they are not due to a problem in the WMAP or Planck pipelines. If these anomalies are in fact primordial, then understanding their origin is fundamental to either validate the standard model of cosmology or to explore new physics. We investigate three other possible issues: 1) the trade-off between minimising systematics due to foreground contamination (with a conservative mask) and minimising systematics due to masking, 2) astrophysical secondary effects (the kinetic Doppler quadrupole and kinetic Sunyaev-Zel'dovich effect), and 3) secondary cosmological signals (the integrated Sachs-Wolfe effect). We address the masking issue by considering new procedures that use both WMAP and Planck to produce higher quality full-sky maps using the sparsity methodology (LGMCA maps). We show the impact of masking is dominant over that of residual foregrounds, and the LGMCA full-sky maps can be used without further processing to study anomalies. We consider four official Planck PR1 and two LGMCA CMB maps. Analysis of the observed CMB maps shows that only the low quadrupole and quadrupole-octopole alignment seem significant, but that the planar octopole, Axis of Evil, mirror parity and cold spot are not significant in nearly all maps considered. After subtraction of astrophysical and cosmological secondary effects, only the low quadrupole may still be considered anomalous, meaning the significance of only one anomaly is affected by secondary effect subtraction out of six anomalies considered. In the spirit of reproducible research all reconstructed maps and codes will be made available for download here http://www.cosmostat.org/anomaliesCMB.html.Comment: Summary of results given in Table 2. Accepted for publication in JCAP, 4th August 201

    Joint Planck and WMAP CMB Map Reconstruction

    Get PDF
    We present a novel estimate of the cosmological microwave background (CMB) map by combining the two latest full-sky microwave surveys: WMAP nine-year and Planck PR1. The joint processing benefits from a recently introduced component separation method coined "local-generalized morphological component analysis'' (LGMCA) based on the sparse distribution of the foregrounds in the wavelet domain. The proposed estimation procedure takes advantage of the IRIS 100 micron as an extra observation on the galactic center for enhanced dust removal. We show that this new CMB map presents several interesting aspects: i) it is a full sky map without using any inpainting or interpolating method, ii) foreground contamination is very low, iii) the Galactic center is very clean, with especially low dust contamination as measured by the cross-correlation between the estimated CMB map and the IRIS 100 micron map, and iv) it is free of thermal SZ contamination.Comment: Astronomy and Astrophysics, accepte

    Reconstruction of the cosmic microwave background lensing for Planck

    Get PDF
    Aims. We prepare real-life cosmic microwave background (CMB) lensing extraction with the forthcoming Planck satellite data by studying two systematic effects related to the foreground contamination: the impact of foreground residuals after a component separation on the lensed CMB map, and the impact of removing a large contaminated region of the sky. Methods. We first use the generalized morphological component analysis (GMCA) method to perform a component separation within a simplified framework, which allows a high statistics Monte-Carlo study. For the second systematic, we apply a realistic mask on the temperature maps and then restore them with a recently developed inpainting technique on the sphere. We investigate the reconstruction of the CMB lensing from the resultant maps using a quadratic estimator in the flat sky limit and on the full sphere. Results. We find that the foreground residuals from the GMCA method does not significantly alter the lensed signal, which is also true for the mask corrected with the inpainting method, even in the presence of point source residuals

    Darth Fader: Using wavelets to obtain accurate redshifts of spectra at very low signal-to-noise

    Get PDF
    We present the DARTH FADER algorithm, a new wavelet-based method for estimating redshifts of galaxy spectra in spectral surveys that is particularly adept in the very low SNR regime. We use a standard cross-correlation method to estimate the redshifts of galaxies, using a template set built using a PCA analysis on a set of simulated, noise-free spectra. Darth Fader employs wavelet filtering to both estimate the continuum & to extract prominent line features in each galaxy spectrum. A simple selection criterion based on the number of features present in the spectrum is then used to clean the catalogue: galaxies with fewer than six total features are removed as we are unlikely to obtain a reliable redshift estimate. Applying our wavelet-based cleaning algorithm to a simulated testing set, we successfully build a clean catalogue including extremely low signal-to-noise data (SNR=2.0), for which we are able to obtain a 5.1% catastrophic failure rate in the redshift estimates (compared with 34.5% prior to cleaning). We also show that for a catalogue with uniformly mixed SNRs between 1.0 & 20.0, with realistic pixel-dependent noise, it is possible to obtain redshifts with a catastrophic failure rate of 3.3% after cleaning (as compared to 22.7% before cleaning). Whilst we do not test this algorithm exhaustively on real data, we present a proof of concept of the applicability of this method to real data, showing that the wavelet filtering techniques perform well when applied to some typical spectra from the SDSS archive. The Darth Fader algorithm provides a robust method for extracting spectral features from very noisy spectra. The resulting clean catalogue gives an extremely low rate of catastrophic failures, even when the spectra have a very low SNR. For very large sky surveys, this technique may offer a significant boost in the number of faint galaxies with accurately determined redshifts.Comment: 22 pages, 15 figures. Accepted for publication in Astronomy & Astrophysic
    • 

    corecore