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ABSTRACT

Context. Upcoming spectroscopic galaxy surveys are extremely promising to help in addressing the major challenges of cosmology,
in particular in understanding the nature of the dark universe. The strength of these surveys, naturally described in spherical geometry,
comes from their unprecedented depth and width, but an optimal extraction of their three-dimensional information is of utmost
importance to best constrain the properties of the dark universe.
Aims. Although there is theoretical motivation and novel tools to explore these surveys using the 3D spherical Fourier-Bessel (SFB)
power spectrum of galaxy number counts C`(k, k′), most survey optimisations and forecasts are based on the tomographic spherical
harmonics power spectrum C(i j)

` . The goal of this paper is to perform a new investigation of the information that can be extracted from
these two analyses in the context of planned stage IV wide-field galaxy surveys.
Methods. We compared tomographic and 3D SFB techniques by comparing the forecast cosmological parameter constraints obtained
from a Fisher analysis. The comparison was made possible by careful and coherent treatment of non-linear scales in the two analyses,
which makes this study the first to compare 3D SFB and tomographic constraints on an equal footing. Nuisance parameters related to
a scale- and redshift-dependent galaxy bias were also included in the computation of the 3D SFB and tomographic power spectra for
the first time.
Results. Tomographic and 3D SFB methods can recover similar constraints in the absence of systematics. This requires choosing an
optimal number of redshift bins for the tomographic analysis, which we computed to be N = 26 for zmed ' 0.4, N = 30 for zmed ' 1.0,
and N = 42 for zmed ' 1.7. When marginalising over nuisance parameters related to the galaxy bias, the forecast 3D SFB constraints
are less affected by this source of systematics than the tomographic constraints. In addition, the rate of increase of the figure of merit
as a function of median redshift is higher for the 3D SFB method than for the 2D tomographic method.
Conclusions. Constraints from the 3D SFB analysis are less sensitive to unavoidable systematics stemming from a redshift- and
scale-dependent galaxy bias. Even for surveys that are optimised with tomography in mind, a 3D SFB analysis is more powerful. In
addition, for survey optimisation, the figure of merit for the 3D SFB method increases more rapidly with redshift, especially at higher
redshifts, suggesting that the 3D SFB method should be preferred for designing and analysing future wide-field spectroscopic surveys.
CosmicPy, the Python package developed for this paper, is freely available at https://cosmicpy.github.io.
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1. Introduction

Understanding the nature of the dark universe is one of the
fundamental challenges of modern cosmology today. Galaxy
clustering − the statistical analysis of the spatial distribution
of galaxy number counts − has been identified as one of the
most promising probes available to explore this (Peebles 1980;
Albrecht et al. 2006; Peacock et al. 2006), with spectroscopic
surveys being particularly useful in probing both tangential and
radial modes in the Universe.

Galaxy number counts have been extensively studied with
current and planned future surveys, and the analysis can be per-
formed in various spaces, for example, Fourier space (Seo &
Eisenstein 2003, 2007), configuration space (Eisenstein et al.
2005; Xu et al. 2010; Slosar et al. 2009), and spherical harmonic
space (e.g., Dolney et al. 2006; Kirk et al. 2012). For future
wide-field spectroscopic surveys, the galaxy field will cover

? Appendices are available in electronic form at
http://www.aanda.org

large areas on the sky so that an analysis in spherical space
provides a natural decomposition for certain physical effects as
well as selection effects. For wide-field spectroscopic surveys,
the depth of the survey means that a 3D spherical Fourier-Bessel
(SFB) analysis is the most natural to perform (Fisher et al. 1995;
Heavens & Taylor 1995; Rassat & Refregier 2012).

Previous SFB analyses of the local Universe (e.g., Erdoğdu
et al. 2006b,a) used relatively small data sets, where straightfor-
ward summation methods were sufficient to measure the SFB
coefficients. Today, novel numerical methods for 3D spherical
analysis are available (Leistedt et al. 2012; Lanusse et al. 2012)
to prepare for future wide-field surveys that will map the large-
scale structure of the Universe with a large number of galax-
ies. The 3D SFB analysis can also be applied to other probes,
for instance weak-lensing (Heavens 2003; Castro et al. 2005;
Kitching et al. 2008, 2011, 2014; Merkel & Schäfer 2013; Grassi
& Schäfer 2014) and the integrated SachsWolfe effect (e.g.
Shapiro et al. 2012), which will be crucial for high-precision
probe combinations.
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Even given the existing 3D SFB tools and the theoretical mo-
tivation for this approach, most existing forecasts and survey op-
timisation for future wide-field surveys focus on a tomographic
analysis, that is, one where the survey is split into redshift bins,
and 2D spherical harmonic auto- and cross-power spectra Ci j(`)
are measured (e.g., Laureijs et al. 2011; Kirk et al. 2012). One
of the advantages of a tomographic spherical harmonics analysis
is that there are several available codes to rapidly calculate the
tomographic spectra, either for galaxy correlations or for other
complementary probes (e.g., Di Dio et al. 2013; Refregier et al.
2011); another advantage is that it is straightforward to convert
survey observables (θ, φ, z) into a power spectrum measurement
without any assumption of cosmological parameters, while the
3D SFB analysis requires an assumption about the fiducial cos-
mology to translate the observables into the 3D SFB spectrum,
which has a dependence of wavenumber k. However, in the to-
mographic analysis, some of the radial information may be lost
as a result of redshift binning, while the 3D SFB analysis po-
tentially uses the entire 3D information, especially for a spectro-
scopic survey. With this in mind, a natural hypothesis is that a
3D SFB spectroscopic analysis might extract more information
than a tomographic one.

Several studies have already investigated this, for example,
Di Dio et al. (2014) and Asorey et al. (2012) found that a tomo-
graphic analysis returned equivalent or better constraints than a
3D Fourier power spectrum analysis. They concluded that the to-
mographic approach should be preferred as it avoids the need to
assume a particular cosmology to convert redshifts into comov-
ing distances and simplifies the combination with other probes
such as weak-lensing. Nevertheless, they both acknowledged
that for a spectroscopic survey the tomographic analysis would
require a large number of redshift bins to recover the full 3D in-
formation, which is limited by shot noise problems. For the first
time, Nicola et al. (2014) compared the tomographic analysis to
a 3D SFB analysis and found the tomographic constraints to be
superior, but they still noted that the 3D SFB approach was sta-
ble with regard to the choice of fiducial cosmology for the nec-
essary conversion from redshift to comoving distance. However,
their treatment of the non-linear scale cut-off used in the Fisher
matrix comparison is not equivalent between the tomographic
and the 3D SFB analysis. While the 3D power spectra is cut off
at a physical scale (k) corresponding to non-linear effects, the
tomographic power spectra are truncated at fixed arbitrary an-
gular scales. This ignores the interplay between the redshift of
the tomographic bins and the wavenumber of the SFB spectrum.
As a result, the non-linear cut-off in Nicola et al. (2014) does
not allow a fair comparison between 2D and 3D methods, which
means understanding the strength of each method is still an open
question. We address this question by carefully excluding non-
linear scales.

Understanding how best to extract information for a
3D galaxy survey is of utmost importance to address the funda-
mental questions in modern cosmology today, and also to ensure
that future planned surveys are efficiently analysed as well as
optimised. To address this pressing question, we propose here a
new investigation of the information that can be extracted from a
spectroscopic galaxy survey by tomographic vs. 3D SFB analy-
sis. Our approach focuses on the seven common parameters that
are currently used in wide-field survey optimisation and plan-
ning, that is, on θ = {Ωm, h, w0, wa, σ8,Ωb, ns}, while putting for-
ward a coherent approach regarding the exclusion of non-linear
scales for both the 2D and 3D methods for the first time. In ad-
dition, we investigate for the first time how tomographic and
3D SFB methods are affected by nuisance parameters related to

the galaxy bias, which we allow to be both redshift- and scale-
dependent. However, we do not include redshift space distor-
tions (RSD) or relativistic effects in our study. Including RSDs,
which will be present in the data, provides an additional probe,
which improves constraints. Although a prescription for RSDs in
SFB space exists (Heavens & Taylor 1995), as a first approach,
we do not include them here in either the tomographic or the
SFB analysis to ensure that we compare like with like. Their im-
pact should nonetheless be assessed, which we plan to do in a
future work.

Finally, in the spirit of reproducible research, we make avail-
able all tomographic and 3D SFB codes used for this analysis,
along with the scripts to reproduce our results.

Our paper is structured as follows: in Sect. 2, we briefly re-
view the theory behind the statistical analysis of galaxy number
counts, including the prescription for the tomographic analysis
and the 3D SFB. In Sect. 3, we provide an overview of the Fisher
matrix forecasting-approach that we used to compare the relative
constraining power of each method, and include the description
of the future spectroscopic wide-field survey for which we cal-
culate forecasts, of the question of non-linear scale treatment,
and galaxy bias nuisance parameters. In Sect. 4, we present the
comparison between the constraining power of the 3D SFB and
tomographic methods and investigate how this comparison holds
in the presence of galaxy bias nuisance parameters. We also de-
termine how this affects a future wide-field survey optimisation.
In Sect. 5, we present our conclusions in the context of high-
precision cosmology with future wide-field surveys.

2. Theory

In this first section we describe the formalism behind the anal-
ysis of galaxy clustering in the context of a spectroscopic sur-
vey. We present the two methodologies compared in this work,
one based on a tomographic analysis of angular correlations, the
other based on the correlations of the 3D expansion of the galaxy
field on a spherical Fourier-Bessel basis.

2.1. Galaxy and matter fields

In a galaxy survey, the quantity observed is the galaxy number
density n(r = (r, θ, ϕ)), which can be defined in terms of the
galaxy overdensity δg through

n(r) = n̄(r)(1 + δg(r, z(r))), (1)

where n̄(r) is the mean number density of observed galaxies at
comoving distance r. In this expression, the time dependence of
the observed overdensity as a function of comoving distance is
made explicit through the z(r) relation. The mean number den-
sity n̄(r) can be expressed in terms of the survey selection func-
tion φ(r) as

n̄(r) = φ(r)n̄ =
N
V
φ(r), (2)

with n̄ the mean number density of observed galaxies, N the to-
tal number of observed galaxies, and V the volume of the survey
that fulfils V =

∫
φ(r)dr. Note that in the general case, the selec-

tion function has both an angular and a radial dependence (see
Sect. 2.4), but in this work, we did not consider the impact of an
angular mask and only account for partial coverage of the sky
through a multiplicative fsky factor.

In expression (1), the time (or redshift) dependence of the
galaxy overdensity is due to the growth of structure and the evo-
lution of galaxy bias with respect to the matter density field with
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time. Following the approach of Rassat & Refregier (2012), in
the linear regime this dependence on redshift can be separated in
the form of growth and bias prefactors,

δg(r, z(r)) = b(r, k)D(r)δ(r) + ε(r), (3)

where b(r, k) is a bias with a possible scale dependence, D(r) is
the growth factor, δ(r) = δ(r, z = 0) is the matter overdensity
field at present day, and ε(r) is a Poisson noise term arising from
the discrete nature of the observed galaxy number density. As
in Rassat et al. (2008), we considered the linear relation (3) to
hold in the standard cosmological model on large scales up to
a redshift-dependent kmax(z) with kmax(z = 0) ' 0.12 h Mpc−1

and kmax(z = 2) ' 0.25 h Mpc−1. We then proceeded to define a
modified selection function that includes the effects of bias and
growth in the linear regime,

φevol = b(r, k)D(r)φ(r). (4)

Using this modified selection function, the observed galaxy den-
sity can now be expressed directly as a function of the true matter
overdensity at present time:

n(r)
n̄

= φ(r) + φevol(r, k)δ(r) + φ(r)ε(r). (5)

2.2. Tomographic analysis of galaxy clustering

In the tomographic analysis, the survey is decomposed into spec-
troscopic redshift bins from which are computed classical angu-
lar correlation functions. The angular number density for one
spectroscopic bin (i) limited between z(i)

min and z(i)
max is defined as

n(i)(θ) = n̄(i)
(
1 + δ(i)(θ)

)
=

∫ z(i)
max

z(i)
min

n(z, θ)dz, (6)

where n̄(i) is the average galaxy number density per steradians
in tomographic bin (i) and δ(i)(θ) is the angular galaxy overden-
sity in bin (i). Expanding the angular overdensity in spherical
harmonics yields

n(i)
`m =

∫
n(i)(θ)Y∗`m(θ)dθ. (7)

From this spherical harmonics expansion, the tomographic an-
gular correlation functions between bins i and j, noted C

(i j)
` , is

defined for ` ≥ 1 as

C
mm′

``′

(i j)
≡

1
n̄(i)2

〈
n(i)
`mn( j)∗

`′m′

〉
, (8)

=

C(i j)
`

+
δK

i j

n̄(i)

 δK
``′δ

K
mm′ , (9)

where δK is the Kronecker symbol. In the last equation, the first
term C(i j)

`
is the contribution from galaxy clustering and the sec-

ond term 1
n̄(i) is the contribution from shot noise, which only af-

fects the auto-correlation power spectra. Note that different an-
gular modes are predicted to be uncorrelated in linear theory for
a Gaussian random field; these can become correlated as a re-
sult of non-linearities or lack of full-sky coverage, effects that
we did not consider in this work. Formally, the correlation func-
tions C(i j)

`
are related to the matter power spectrum P(k) at z = 0,

in the linear regime, according to

C(i j)
`

=
2
π

∫
dkP(k)k2

∫
w(i)

evol(r, k) j`(kr)dr

×

∫
w

( j)
evol(r

′, k) j`(kr′)dr′, (10)

where w(i)
evol is a window function for bin (i), which includes the

effects of spectroscopic selection, linear growth, and bias:

w(i)
evol = φevol(r, k)s(i)(r), (11)

with φevol is the modifier selection function including growth and
bias introduced in Eq. (4) and s(i) is the spectroscopic selection
function that defines the redshift bin i, that is, s(i)(z) = 1 if z ∈
[z(i)

min, z
(i)
max], s(i)(z) = 0 otherwise.

This expression is the full general expression of the tomo-
graphic angular power spectrum. However, it is common to eval-
uate the angular power spectrum through the well-known Limber
approximation. To the first order (Loverde & Afshordi 2008), the
Limber approximation applied to the previous equation yields

C(i j)
`|Limber

=

∫
dr
r2 P

(
` + 1/2

r

)
w

( j)
evol

(
r,
` + 1/2

r

)
× w(i)

evol

(
r,
` + 1/2

r

)
· (12)

The Limber approximation holds to very good accuracy for
the auto-correlations under the assumption that the bin window
functions do not vary too rapidly or that the overlap between bins
is not too small.

2.3. 3D spherical Fourier-Bessel analysis of galaxy
clustering

The spherical Fourier-Bessel transform of the galaxy number
density n(r) is defined as

nlm(k) =

√
2
π

∫
n(r)k j`(kr)Y∗lm(θ, ϕ)dr, (13)

where j` are spherical Bessel functions, Y`m are spherical har-
monics, ` and m are multipole moments, and k is the wavenum-
ber. Note that in this work we follow the orthonormal convention
for the SFB, as in Rassat & Refregier (2012), Fisher et al. (1995),
or Pratten & Munshi (2013). From the SFB coefficients n`m(k),
the number density can be recovered through the inverse SFB
transform as

n(r, θ, ϕ) =

√
2
π

∑
`,m

∫
n`m(k)k j`(kr)dkY`m(θ, ϕ). (14)

Although the SFB expansion is performed in comoving space, in
practice, the galaxy number density is only observed in redshift
space. This means that a fiducial cosmology has to be assumed
to relate observed redshift and comoving distance of the galaxies
in the survey. To distinguish between true comoving distance r
and estimated comoving distance, we introduce the notation

r̃ ≡ r|fid (z). (15)

When the fiducial cosmology exactly corresponds to the true
cosmology, r̃ = r, but in general, this is not the case.
The importance of making this distinction has been stressed in

A10, page 3 of 12



A&A 578, A10 (2015)

Heavens et al. (2006), especially when constraining dark energy
parameters, which are very sensitive to the r(z) relation.

For multipoles of order ` ≥ 1, the 3D SFB spectrum of the
observed galaxy density can be expressed in the form

C
mm′

``′ (k, k′) ≡
1
n̄2 〈n`m(k)n∗`′m′ (k

′)〉, (16)

=
(
C`(k, k′) + N`(k, k′)

)
δ``′δmm′ . (17)

This expression can be directly compared to the definition of
the tomographic power spectra in Eq. (9). Just like in the to-
mographic case, different angular multipoles are not correlated
when an angular mask is neglected. In this expression, the signal
power spectrum C`(k, k′) takes the form (see Rassat & Refregier
2012, for this exact prescription or Heavens & Taylor 1995)

C`(k, k′) =

(
2
π

)2 ∫
k′′2P(k′′)Wevol

` (k, k′′)Wevol
` (k′, k′′)dk′′, (18)

where the following window function includes the effects of lin-
ear growth and bias and the fiducial redshift-comoving distance
relation:

Wevol
` (k, k′′) = k

∫
φevol(r, k′′) j`(kr̃) j`(k′′r)r2dr. (19)

The noise covariance matrix can be expressed as

N`(k, k′) =
2kk′

n̄π

∫
φ(r) j`(kr̃) j`(k′r̃)r2dr. (20)

This expression is equivalent to that used in Yoo & Desjacques
(2013), and a derivation can be found in Appendix C.

When considering a realistic galaxy survey with finite depth,
the observed galaxy number density vanishes above a given rmax
and fulfils

∀(θ, φ), n(rmax, θ, φ) = 0. (21)

Under this boundary condition, the spherical Fourier-Bessel
transform can be inverted from discretely sampled coefficients
n`m(k`n) and (14) becomes

n(r, θ, φ) =
∑
`,m,n

κ`nn`m(k`n)k`n j`(k`nr)Y`m(θ, φ), (22)

where the discrete wavenumbers k`n are defined in terms of the
zeros of the spherical Bessel function q`n as

k`n =
q`n
rmax

, (23)

and the normalisation factors κ`n are defined as κ`n =
√

2πr−3
max

j2l+1(qln)
(Fisher et al. 1995).

In the context of Fisher matrix forecasting, the main con-
sequence of this discretisation is that it imposes a discrete sam-
pling of the SFB spectrum that can be represented in matrix form
C`(n, n′) = C`(k`n, k`n′ ) without loss of information.

2.4. Effect of partial sky coverage

So far, we have assumed complete sky coverage. However, ob-
scuration and confusion due to our own galaxy means that only
a portion of the sky is observable in practice. This effect can
be modelled in a similar way for both tomographic and SFB
derivations by applying an angular weighting function M(θ, φ)
to the galaxy density field, for instance with M(θ, φ) = 0 in

masked areas and M(θ, φ) = 1 otherwise. The effect of such a
mask on angular power spectra is well known and results in a
coupling of angular modes that would otherwise remain uncor-
related. Formally, the signal part of both tomographic and SFB
power spectra becomes

Cmm′(i j)
``′

=
∑
`′′m′′

M`m`′′m′′M`′m′`′′m′′C
(i j)
`′′
, (24)

Cmm′
``′ (k, k′) =

∑
`′′m′′

M`m`′′m′′M`′m′`′′m′′

"
K``′′ (k, k1)K`′`′′ (k′, k2)

×C`′′ (k1, k2) dk1dk2, (25)

where M`m`′′m′′ is an angular coupling kernel defined in terms of
the angular mask as

M`m`′m′ =

∫
Ω

Y`′m′ (Ω)M(Ω)Y∗`m(Ω), (26)

and K``′ (k, k′) is a wavenumber coupling kernel defined as

K``′ (k, k′) =
2
π

k′2
∫

r
j`(kr) j`′ (k′r)r2dr. (27)

The noise part of the power spectra that is the result of shot noise
can be approximated as only affected by a simple area scaling
(Kitching et al. 2014). Note that the coupling matrix K``′ (k, k′)
reduces to a Dirac delta function when ` = `′ thanks to the or-
thogonality of the spherical Bessel functions. In both cases, the
mask will induce a coupling of angular modes. In the SFB case,
this also means that the coupling kernels K``′ (k, k′) can no longer
be considered as Dirac delta functions and induce an additional
coupling between different wavenumbers.

In practice, the impact of the mask can conveniently be taken
into account using the pseudo-C` methodology, which is well
known for studies of the cosmic microwave background (Hivon
et al. 2002). In the tomographic as well as the SFB analysis, the
pseudo-C` estimator can be linked to the theoretical C` power
spectrum using either a 2D or 3D mixing matrix:

〈C̃`(k`n, k`n′ )〉 =
∑
`′n1n2

M3D
``′nn1n′n2

C`′ (k`′n1 , k`′n2 ), (28)

〈C̃(i j)
`
〉 =

∑
``′

M2D
``′C

(i j)
`′
. (29)

A derivation of the 2D mixing matrix can be found in Hivon
et al. (2002), while the 3D matrix for the galaxy clustering SFB
power spectrum is derived in Pratten & Munshi (2013).

For the purpose of this paper, it is important to point out
that the effect of the mask can be taken into account in a sim-
ilar way using pseudo-C`s for the two methodologies explored
here. Consequently, in a likelihood analyses using these expres-
sions for the measured power spectra, the effect of the mask
should be equivalent for the tomographic and SFB approaches.
Therefore we only took partial sky coverage through the com-
mon fsky scaling factor into account here for simplicity. This is
standard practice for Fisher matrix analyses.

3. Forecasting cosmological constraints

3.1. Fisher matrix forecasting

Expected cosmological constraints using the two different anal-
ysis techniques introduced in the previous section can be esti-
mated with the Fisher matrix formalism (Tegmark et al. 1997).
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The Fisher information matrix provides a lower bound on the
expected errors on cosmological parameters under the assump-
tion that the likelihood can be approximated by a Gaussian at its
peaks. It is formally defined as the expectation value of the sec-
ond derivative of the logarithmic likelihood with respect to the
parameters Θα,Θβ:

Fαβ = −

〈
∂2 ln L
∂Θα∂Θβ

〉
· (30)

From this matrix, the marginal error on parameter Θα in partic-
ular can be extracted as

√
(F−1)αα, and the error on Θα, all other

parameters being fixed, is bounded by (Fαα)−1/2.
The Fisher matrix may be computed from the covariance ma-

trix of the observable and its derivatives as

Fαβ =
1
2

Tr
[
C−1C,αC−1C,β

]
. (31)

3.1.1. Implementing the tomographic Fisher matrix

For the tomographic spectra C(i j)
`

, we computed the covariances
between spectra under the Gaussian approximation following
the approach of Hu & Jain (2004) and Joachimi & Bridle (2010).
Denoting by ∆C(i j)

`
the difference between the ensemble average

of the spectrum and its estimator, the tomographic power spectra
covariance is defined as

Cov(i jkl)
`
≡

〈
∆C(i j)

`
∆C(kl)

`

〉
, (32)

=
δ``′

fsky(2` + 1)

[
C̄(ik)
`

C̄( jl)
`

+ C̄(il)
`

C̄( jk)
`

]
, (33)

where fsky accounts for partial coverage of the sky and C̄(i j)
`

is
the tomographic power spectrum including shot noise defined
in Eq. (9). The expression of the tomographic Fisher matrix
becomes

F tomo
αβ =

∑
(i j),(kl)

`max(i jkl)∑
`

∂C(i j)
`

∂Θα
Cov−1(i jkl)

`

∂C(kl)
`

∂Θβ
, (34)

where the sum over (i j), (kl) indices loops over all Nzbins(Nzbins +
1)/2 combinations of bins, and `max is a cut in multipole. The
aim of this cut is to restrict the Fisher matrix to linear scales.
Several strategies are possible to define `max; we describe the
one adopted in this work in Sect. 3.1.4.

For the binning strategy, we chose to use equal galaxy den-
sity bins with no overlap. This choice led to bins with irregular
widths, but constant shot noise.

3.1.2. Implementing the SFB Fisher matrix

The Fisher matrix for the 3D SFB spectra was computed us-
ing the non-diagonal covariance matrix obtained by discretising
wavenumbers k under the boundary condition n(rmax) = 0 as
explained in Sect. 2.3. Details of computing the non-diagonal
covariance matrix are given in Appendix B. In the absence of
angular mask, Eq. (17) shows that the SFB coefficients are un-
correlated between different angular multipoles `. Therefore, the
Fisher matrix for the SFB spectra takes the following form:

FSFB
αβ = fsky

∑
`

(2` + 1)
2

Tr
Ĉ−1

`

∂Ĉ`

∂Θα
Ĉ−1
`

∂Ĉ`

∂Θβ

 , (35)

where the matrices Ĉ` are defined as

Ĉ` =


C`(0, 0) C`(0, 1) . . . C`(0, n`max)
C`(1, 0) C`(1, 1) . . . C`(1, n`max)

...
...

. . .
...

C`(n`max, 0) C`(n`max, 1) . . . C`(n`max, n
`
max)

 , (36)

with C`(n, p) = C`(k`n, k`p) + N`(k`n, k`p). The size of each of
this matrix Ĉ` is n`max × n`max, where n`max defines the maximum
wavenumber included in the Fisher analysis for each multipole `.
This allows us to restrict the analysis to linear scales. Again, dif-
ferent strategies can be adopted to define this cut in wavenumber;
they are described in Sect. 3.1.4.

3.1.3. Fisher analysis baseline

To conduct this study, we adopted as a fiducial model a “Vanilla”
concordance flat cosmology with h = 0.7, Ωb = 0.045, Ωm =
0.25, ΩΛ = 0.75, Ωb = 0.045, w0 = −0.95, wa = 0, ns = 1, τ =
0.09, and σ8 = 0.8. We adopted the standard parametrisation for
the dark energy equation of state (Chevallier & Polarski 2001),

w(a) = w0 + wa(1 − a). (37)

This fiducial cosmology was also used to compute the r̃ =
rfid(z). In this model, we computed the linear matter power spec-
tra, including baryonic oscillations, using the fitting formula of
Eisenstein & Hu (1998). We performed our Fisher analysis on
the following parameters Θ = (h,Ωm, w0, wa,Ωb, ns, σ8) under
the constraint of a flat cosmology.

For our baseline analysis we considered a spectroscopic sur-
vey with a very small redshift uncertainty σz = 0.003(1 + z) and
a Smail-type galaxy distribution p(z) (Smail et al. 1994),

p(z) ∝ z2e−(
z

0.708 )1.5

, (38)

which corresponds to a median redshift of zmed = 1, and we used
a mean number density of galaxies of n̄ = 0.9 gal. arcmin−2.
To account for partial coverage of the sky, we scaled the Fisher
information by fsky = 0.3636, which corresponds to a survey
size of 15 000 sq. deg. This setting was chosen to correspond
to the specification of the stage-IV Euclid spectroscopic survey
(Laureijs et al. 2011).

Finally, we adopted a redshift dependent fiducial galaxy bias
of the form

b(z, k) =
√

1 + z, (39)

as in Rassat et al. (2008). In Sect. 3.1.5 we describe how we
accounted for our lack of knowledge on the actual galaxy bias
by parametrising this relation through nuisance parameters.

3.1.4. Restriction to linear scales

The constraints we aim to extract from a galaxy survey result
from the information contained in the matter power spectrum.
However, since the galaxies are only biased tracers of the actual
underlying matter density, our knowledge of the matter power
spectrum is limited by our understanding of the bias. This bias
becomes more uncertain on small non-linear scales. Assuming
an optimistic knowledge of the bias could result in overesti-
mated or cosmologically biased constraints. Hence, following
previous galaxy clustering studies (e.g., Rassat et al. 2007, 2008;
Joachimi & Bridle 2010), we completely discarded the mildly to
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non-linear scales and express our uncertainty of the bias on large
scales by using nuisance parameters in the next section.

As the aim of this work is to compare the constraining
power of two different approaches to galaxy clustering analy-
sis, it is important to apply the exclusion of non-linear scales to
the two methods in a coherent way to avoid biasing our results
towards the method with the less conservative cut. Following
the approach taken in Joachimi & Bridle (2010), which was
based on results from Rassat et al. (2008), we aim to only re-
tain linear scales through the following redshift-dependent cut
in wavenumber kmax

lin :

kmax
lin (z) ≈ min[0.132z, 0.25] h Mpc−1. (40)

This formula is a linear fit to the non-linearity scale in Fig. 2
of Rassat et al. (2008), which was computed as a function of
redshift by selecting scales that fulfil σ(R) < 0.20 and kmax <
0.25 h Mpc−1, where σ(R) corresponds to the amplitude of fluc-
tuations at R h Mpc−1. However, it provides a conservative cut
at lower redshift (below z = 0.5). Since the purpose of this work
is to compare two methodologies given the same framework and
set of assumptions, we used this model for the sake of simplicity.
An accurate computation of the non-linear scale could be used
just as well, but this is not expected to change the conclusions of
the comparative analysis.

Because we computed the tomographic power spectra within
the Limber approximation, we related wavenumbers k to angular
modes ` through k =

`+1/2
r . As a result, the non-linear scale cut

translates into multipoles ` for redshift bin (i) as

`(i)
max = kmax

lin

(
z(i)

med

)
r
(
z(i)

min

)
. (41)

This cut allows us to reject all the multipoles for a given bin
(i) that is affected by scales above kmax

lin (z(i)
med). When computing

the correlation function between two different bins (i), ( j) we
applied the most conservative cut: `(i j)

max = min(`(i)
max, `

( j)
max).

In the SFB framework, applying a corresponding wavenum-
ber cut leads to an ` dependent maximum number of discrete
wavenumbers k`n, noted n`max, which can be obtained as the so-
lution of the equation

k`n`max
r
(

0.132
k`n`max

)
= `, (42)

under the constraint k`n`max
≤ 0.25 h Mpc−1. Both cuts are illus-

trated in Fig. 1.
Thanks to this prescription, the same scales are excluded

from the tomographic and SFB analysis. This point is the main
difference between our work and the analysis performed in
Nicola et al. (2014), where the exclusion of non-linear scales
is not coherent between the two methodologies. In their work,
the angular power spectra are truncated at `max = 50 for all
redshifts, whereas as shown in Fig. 1, `max should be a func-
tion of the median redshifts of the tomographic bins to take
into account the time evolution of the non-linear scale as well
as the physical size of angular modes as a function of redshift.
Similarly, in the SFB analysis performed in their work, a fixed
cut at kmax = 0.20 h Mpc−1 was applied, which not only ignores
the interplay between angular modes and z illustrated by Fig. 1,
but is also incoherent with the cut applied in the tomographic
analysis.
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Fig. 1. Top: linear-scale limit in k for the SFB power spectra as a func-
tion of angular modes. Bottom: linear-scale limit `max for the tomo-
graphic power spectra C(i j)

` as a function of the lowest median redshift of
the spectroscopic bins i and j. The regions above the lines are excluded
from the Fisher analysis.

3.1.5. Nuisance parameters

As mentioned in the previous section, restricting the study to
linear scales avoids the high uncertainty on the bias that arises
in the non-linear regime. Nevertheless, we also wish to express
our uncertainty on the bias even on linear scales. Following the
approach of Bridle & King (2007), Joachimi & Bridle (2010),
and Kirk et al. (2012), we parametrised the bias in redshift and
scale using a grid of nuisance parameters such that the galaxy
bias becomes

b(k, z) = AQ(k, z)b0(k, z), (43)

where b0 is our fiducial bias relation (39), A is an overall ampli-
tude and Q(k, z) encodes perturbations around the fiducial bias
and is defined in terms of an Nz × Nk grid of parameters Bi j:

ln Q(k, z) = Ki(k)Z j(z)Bi j + [1 − Ki(k)]Z jB(i+1) j

+ Ki[1 − Z j(z)]Bi( j+1) + [1 − Ki(k)][1 − Z j(z)]B(i+1)( j+1), (44)

for ki ≤ k ≤ ki+1 and z j < z ≤ z j+1, where the coefficients Z j and
Ki are expressed as

Ki(k) =
ln(k) − ln(ki)

ln(ki+1) − ln(ki)
, (45)

Z j(k) =
ln(1 + z) − ln(1 + z j)

ln(1 + z j+1) − ln(1 + z j)
· (46)

The ki and z j fix the nodes of the grid and are spaced loga-
rithmically in the intervals k ∈ [10−4, 1.0] and z ∈ [0, 5] such
that k0 = kmin, kNk+1 = kmax and z0 = zmin, zNz+1 = zmax. The
Fisher matrices are then obtained by marginalising over these
Nk × Nz + 1 nuisance parameters

(
A, B00, B01, B10, . . . , BNk Nz

)
.

3.2. Figures of merit

Throughout the rest of this work we compare the constraining
power of the tomographic and SFB methods by evaluating their
respective figures of merit (FoM). We consider two FoMs, first
the total figure of merit FoMTOT defined according to Joachimi
& Bridle (2010) as

FoMTOT = ln
(

1
det(F−1)

)
, (47)

A10, page 6 of 12

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201424456&pdf_id=1


F. Lanusse et al.: Spherical 3D analysis of galaxy clustering

0
10
20
30
40
50
60
70
80

F
oM

T
O

T

0 10 20 30 40 50 60
Number of tomographic bins

10-3

10-2

10-1

100

101

102

F
oM

D
E

T
F

C
ij
`  fixed bias

C
ij
`  free bias

C` (k,k
′ ) fixed bias

C` (k,k
′ ) free bias

Fig. 2. Comparison of the total FoMTOT (top) and dark energy FoMDETF
(bottom) figures of merit for the 3D Fourier-Bessel analysis (horizon-
tal dashed lines) vs. tomographic analysis (solid lines) as a function of
number of redshift bins. The upper lines (dashed and triangle) result
from assuming a fixed bias, the lower lines (dotted and circle) are ob-
tained when assuming a grid of 5 × 5 nuisance parameters in scale and
redshift described in Sect. 3.1.5.

and second, the dark energy figure of merit recommended by the
report of the Dark Energy Task Force (Albrecht et al. 2006),

FoMDETF =
1√

det(F−1)w0wa

· (48)

The DETF FoM was designed to measure the strength of a given
future survey or probe in constraining cosmological parameters
related to the nature of dark energy, such that a large FoMDETF
value meant a high constraining power on w0 and wa. The total
FoM (FoMTOT) was designed to encompass the strength of a fu-
ture survey or probe in constraining several parameters across
different sectors of cosmology, such as the nature of dark matter
and dark energy and initial conditions. A high value of FoMTOT
therefore means a good constraining power across all cosmo-
logical sectors. The parameter is taken as an ln value, since we
consider this number for seven cosmological parameters, and the
FoMTOT value would grow very quickly otherwise.

4. Results: SFB vs. tomographic analysis

4.1. Comparison of SFB and tomographic analysis
in the absence of systematics

Here, we compare the relative constraining power of the to-
mographic and SFB analysis of galaxy clustering presented in
Sect. 2 using the Fisher matrix formalism and the fiducial cos-
mology and survey baseline described in Sect. 3. We investigate
first the impact of the number of redshift bins and whether the
same constraints can be recovered from the two different anal-
ysis. Figure 2 shows the FoMs obtained using both methods as
a function of number of tomographic spectroscopic bins when
assuming perfect knowledge of the bias (in dark blue).

As expected, the two figures of merit for the tomographic
analysis increase with the number of redshift bins and eventu-
ally reach the performance of the SFB analysis for 30 redshift
bins. Not only do the two methodologies yield equivalent fig-
ures of merit for this number of bins, but the 1σ contours for
all cosmological parameters are extremely similar, both in size
of the ellipse and for the direction of the degeneracies. Figure 3

shows the 1σ contours on all pairs of cosmological parameters
considered for the two analysis techniques using 30 tomographic
bins with and without nuisance parameters for the bias. For the
fixed bias, the contours obtained by the tomographic analysis are
plotted in red and are almost indistinguishable from the contours
for the SFB analysis, which are depicted in orange.

We conclude that exactly the same information is extracted
from the two methodologies for an appropriate number of red-
shift bins, 30 in our case.

This result disagrees with the conclusions of Nicola et al.
(2014), who found that the SFB analysis is weaker than
a tomographic analysis and not capable of extracting the
same radial information. The difference in these conclusions
is probably related to the choice of non-linear prescription.
In Nicola et al. (2014), the tomographic SHT analysis was lim-
ited to a fixed `max for all bins, while the SFB analysis was re-
stricted to a fixed kmax for all multipoles. However, we show in
Fig. 1 that to apply equivalent cuts for the tomographic and SFB
analysis, redshift-dependent `max(zmed) and `-dependent kmax(`)
cuts need to be used.

Additionally, Fig. 2 shows that when the number of bins
is increased, the tomographic analysis eventually surpasses
the SFB analysis. This behaviour is expected, because when
the width of the redshift bins reaches the non-linearity scale,
the tomographic analysis probes more modes than a 3D anal-
ysis (Asorey et al. 2012; Di Dio et al. 2014). Indeed, only non-
linear angular scales are excluded from the tomographic analy-
sis, but for very thin redshift bins, small radial scales are being
probed that are potentially beyond the non-linear cut-off. Asorey
et al. (2012) found that a tomographic analysis with a bin width
of ∆r ' 0.8 2π

kmax
was equivalent to a 3D power spectrum analy-

sis including scales up to kmax. We found that the tomographic
analysis recovers the information from the 3D analysis for about
30 redshift bins. If one expects the two methodologies to give
similar results for ∆r ' 2π

kmax
, then one would expect a larger

number of tomographic bins to be necessary. Here, our 30 bins
correspond to a minimum bin width ∆r ' 0.55 2π

kmax
, which is not

as close to the non-linearity scale as the results from Asorey et al.
(2012), but remains of the same order of magnitude.

However, we stress that such a direct comparison is subject
to several factors that complicate the interpretation. Firstly, the
tomographic spectra are computed within the Limber approxi-
mation, which may not be accurate for a large number of thin
bins. A recent study of the effect of the Limber approximation
for a spectroscopic survey can be found in Eriksen & Gaztanaga
(2014). Because we restricted our analysis to large linear scales,
we limited the number of tomographic bins to 30 in the rest
of the analysis, which corresponds to redshift widths between
∆z = 0.1 and ∆z = 0.05. In this case, according to Eriksen &
Gaztanaga (2014), the error of approximation remains limited
(below 15% for most bins). Therefore, we do not expect the full
computation to significantly alter the results of the comparative
study lead in this work. Nevertheless, this point should be kept in
mind and deserves a thorough analysis, which we will include in
future work. We also stress that although care has been taken to
apply similar non-linear cuts, they are not strictly equivalent, and
different strategies to restrict angular modes in the tomographic
analysis would affect the results.

Therefore, we consider that for a fixed bias, both analysis
methodologies recover the same information for 30 tomographic
bins, which corresponds to a minimum bin width of the order
of the non-linearity scale. We also acknowledge that the exact
number of bins is likely to change for different binning strategy,
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Fig. 3. 1σ contours for all pairs of cosmological parameters for the SFB analysis and the tomographic analysis for 30 bins with and without
nuisance parameters. Inner orange and red contours (almost indistinguishable) result from the SFB and tomographic analysis when assuming a
fixed bias. Outer yellow and purple contours are obtained from the SFB and tomographic analysis when using a 5 × 5 nuisance parameter grid in
scale and redshift for the bias.

computation techniques of angular power spectra, restrictions
of non-linear scales and with the inclusion of additional effects
such as redshift space distortions or relativistic effects. A thor-
ough study of all these effects will be addressed in a future paper.

4.2. Impact of systematics due to galaxy bias

After establishing that the same information can be recovered
from both methodologies in the absence of systematics on the
bias, we now investigate the impact of an unknown bias. As
described in Sect. 3.1.5, we include in the analysis an uncer-
tainty on the galaxy bias using a grid of nuisance parameters
in scale and redshift. Figure 2 demonstrates how the FoMs for
both analysis are degraded when using a free bias parametrised
in scale and redshift by a 5×5 nuisance parameter grid (in cyan).
Whereas the FoMs were equivalent with 30 tomographic bins in
the fixed bias case, the tomographic analysis can no longer re-
cover the same information as the SFB analysis in the free bias
case, even with 60 redshift bins. The tomographic analysis is
much more sensitive to systematics resulting from the unknown
bias than the SFB analysis.

We investigated the effect of the number of nuisance param-
eters in scale and redshift Nk × Nz on the FoMs for the tomo-
graphic (red triangle) and SFB (blue dot) analysis in Fig. 4. We
varied Nk and Nz independently while keeping the other param-
eter fixed to 5. When the number of nuisance parameters in-
creases, the constraints from both analyses decreases, although
the FoMs from the tomographic analysis degrade faster than for
the SFB analysis.
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Fig. 4. Total FoMTOT (top) and dark energy FoMDETF (bottom) figures
of merit as a function of the number of nuisance parameters in redshift
(left) and scale (right), for a tomographic with 30 bins (red triangle)
and an SFB (blue dot) analysis. When varying the number of nuisance
parameters in scale or redshift, the other number of parameters is kept
fixed at 5.

Although the FoMs reach a plateau at about Nz = 12 and
Nk = 6, these numbers would correspond to a very conservative
model of the galaxy bias and therefore are probably unrealistic.
Indeed, the evolution of galaxy bias should be smooth on large
scales, which prompts us to limit the fiducial parameter grid used
in this section to Nz = 5 and Nk = 5. Since the trends in FoMs
do not change with the number of nuisance parameters, a more
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complex grid (increasing either Nz or Nk) would not change
the conclusions on the relative strength of the two methodologies
investigated here (the SFB FoM remains higher for any choice
of nuisance parameters).

The effect of the free bias on the 1σ contours on cosmolog-
ical parameters is shown in Fig. 3, where the purple and yel-
low contours are computed from the 30-bin tomographic anal-
ysis and the SFB analysis. Interestingly, the constraints on σ8
and ns are affected in the same way for the two methodologies
by the inclusion of nuisance parameters; the contours are almost
equivalent for (ns, σ8) with or without nuisance parameters. In
contrast, all other parameters are much more degraded by the
including nuisance parameters in the case of the tomographic
analysis compared to the SFB analysis. This is particularly true
for the dark energy parameters w0 and wa.

These results agree with Asorey et al. (2012), who noted
that the tomographic constraints degrade faster than a 3D power
spectrum analysis when a single nuisance parameter on the am-
plitude of the bias was included. We find a similar behaviour
with a more flexible parameterisation of the bias and for the 3D
SFB analysis.

Furthermore, these results highlight the well-known sensitiv-
ity of galaxy clustering studies to the galaxy bias, which is one of
its most important systematics. Although other approaches such
as the measurement of the BAO scale are less sensitive to the
galaxy bias, this results in the usual trade-off between systemat-
ics and statistical constraining power, so that BAO studies alone
(i.e. using only BAO scale measurement) only provide conserva-
tive constraints without relying on external priors (Rassat et al.
2008).

4.3. Optimisation of a stage-IV survey

Since we have shown in Sect. 4.2 that the 3D SFB and tomo-
graphic methods depend differently on nuisance parameters, we
are interested in investigating whether there are other differences
in using one method or the other to plan for future wide-field
surveys.

In this section we investigate the influence of the median
redshift on the constraining power of a stage-IV spectroscopic
survey using the two techniques. To perform this comparison,
we used the same 5 × 5 nuisance parameter grid for the bias
as in the previous section. We also adapted the number of to-
mographic bins to the median redshift of the survey to preserve
the equivalence between tomographic and SFB constraints in the
absence of systematics found in Sect. 4.1. The smallest radial
scales probed by a tomographic analysis depend on the depth of
the survey and on the number of bins. Therefore, to remain co-
herent for different median redshifts with the SFB analysis, the
number of bins needs to be adjusted to the median redshift. We
find that for a median redshift of zmed ' 0.4, the number of bins
of the tomographic analysis should be N = 26 and for zmed ' 1.7
this number increases to N = 42. To illustrate this point, we plot
in Fig. 5 the FoMs as red triangles as a function of the median
redshift using this adapted number of bins. The cyan line shows
the evolution of the FoMs when keeping the number of bins fixed
at N = 30. Since this number of 30 tomographic bins was cho-
sen in the previous section based on our fiducial survey with a
median redshift of 1, we see that the red and cyan curves cross at
zmed = 1. However, using 30 bins below zmed = 1 means probing
smaller radial scales, which are beyond the scales probed by the
SFB analysis, and this increases the FoMs. In contrast, above
zmed = 1, this means using wider tomographic bins and thus
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Fig. 5. Total FoMTOT (top) and dark energy FoMDETF (bottom) figures
of merit as a function of median redshift of a stage-IV spectroscopic
survey using a tomographic analysis (red triangles) and an SFB analysis
(blue dots). The cyan line shows the figures of merit for the tomographic
analysis when the number of bins is not adapted to the depth of the
survey and kept at 30 bins. For the red-dashed lines, the number of
bins has been adapted to each median redshift. In all cases, a grid of
5 × 5 nuisance parameters in scale and redshift is used to parametrise
the galaxy bias.

probing larger radial scales, which lowers the FoMs compared
to when the number of bins is adapted.

We also plot in Fig. 5 the 3D SFB FoMs as a function of
the median redshift of the survey, using blue circles. This curve
should be compared to the red triangles showing the FoMs for
the tomographic analysis where we have adapted the number
of tomographic bins based on the median redshift, as described
above. The two techniques exhibit a similar scaling with the me-
dian redshift of the survey, although the SFB constraints are con-
sistently better than the tomographic constraints. Interestingly,
for median redshifts above zmed = 1.4, the SFB dark energy FoM
exhibits a better scaling than the tomographic one.

In conclusion, in the presence of galaxy bias systematics,
any desired FOM level can be reached for shallower surveys
if a 3D SFB analysis is performed. Furthermore, increasing the
depth of the survey is more profitable in terms of FOMDETF for
the 3D SFB analysis because the tomographic method reaches a
plateau somewhat after z = 1, whereas the 3D method continues
to increase significantly up to z = 1.8, potentially pushing the
optimisations towards higher median redshifts.

5. Conclusion

We have compared two different approaches to the three-
dimensional analysis of galaxy clustering in the context of
wide and deep future spectroscopic galaxy surveys. Based
on the Fisher matrix analysis, we have compared the tomo-
graphic spherical harmonics and spherical Fourier-Bessel (SFB)
methodologies in terms of figures of merit and cosmological
parameter constraints.

We focused on the seven common parameters that are cur-
rently used in wide-field survey optimisation and planning: θ =
{Ωm, h, w0, wa, σ8,Ωb, ns}, while putting forward a coherent and
realistic approach regarding the exclusion of non-linear scales
for both the 2D and 3D methods. In addition, we investigated
for the first time how tomographic and 3D SFB methods are af-
fected by nuisance parameters related to the galaxy bias, which
we allowed to be both redshift- and scale-dependent.
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In the absence of systematics, for an appropriate number of
tomographic bins the two methodologies are equivalent and are
able to recover the exact same constraints − both in value and in
direction of degeneracy between different parameters. Increasing
the number of redshift bins further leads to stronger constraints
for the tomographic analysis, as seen by Asorey et al. (2012),
Di Dio et al. (2014), and Nicola et al. (2014). Nevertheless,
this effect could result from including radial scales in the tomo-
graphic analysis that are beyond the non-linear cut-off applied to
the SFB analysis, and should be investigated further.

On the other hand, when we included unavoidable system-
atics due to the galaxy bias through a grid of nuisance param-
eters in scale and redshift, we found that the SFB analysis is
more robust than the tomographic analysis, whose constraints
suffer more from including nuisance parameters. As a result, we
found that when we optimised the median redshift of a stage-IV
type spectroscopic galaxy survey, a given level of accuracy can
be achieved for shallower surveys if a 3D SFB analysis is per-
formed. Moreover, the scaling of the dark energy figure of merit
with median redshift is better for the 3D SFB analysis in the
presence of systematics, which means that a given increase of
the survey depth yields more information using an SFB analysis
than a tomographic analysis.

Our results suggest that an SFB analysis is preferable to a to-
mographic analysis for realistic future spectroscopic wide-field
surveys where the galaxy bias can be both redshift- and scale-
dependent, and is unknown. These conclusions should be inves-
tigated in more detail, for example regarding the potential effect
of the exact computation of angular power spectra, binning strat-
egy, and including RSD.

In the spirit of reproducible research, the Python package
CosmicPy developed to produce all the results presented in this
work is freely available at http://cosmicpy.github.io.

This package allows for simple and interactive computation
of tomographic and 3D SFB power spectra as well as Fisher ma-
trices while relying on a fast C++ implementation of Fourier-
Bessel related computations.
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Erdoğdu, P. Huchra, J. P., Lahay, O., et al. 2006a, MNRAS, 368, 1515
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Appendix A: CosmicPy package

Listing 1. Example of 3D SFB and tomographic Fisher matrix
computations using CosmicPy.

CosmicPy is an interactive Python package that allows for
simple cosmological computations. Designed to be modular,
well-documented and easily extensible, this package aims to be
a convenient tool for forecasting cosmological parameter con-
straints for different probes and different statistics. Currently,

the package includes basic functionalities such as cosmological
distances and matter power spectra (based on Eisenstein & Hu
1998; and Smith et al. 2003), and facilities for computing tomo-
graphic (using the Limber approximation) and 3D SFB power
spectra for galaxy clustering and the associated Fisher matrices.

Listing 1 illustrates how CosmicPy can be used to easily
compute the 3D SFB Fisher matrix, extract the figure of merit,
and generate the associated corner plot similar to Fig. 3.

The full documentation of the package and a number of tu-
torials demonstrating how to use the different functionalities and
reproduce the results of this paper is provided at the CosmicPy
webpage: http://cosmicpy.github.io

Although CosmicPy is primarily written in Python for code
readability, it also includes a simple interface to C/C++, allow-
ing critical parts of the codes to have a fast C++ implementation
as well as enabling existing codes to be easily interfaced with
CosmicPy.

Contributions to the package are very welcome and can be in
the form of feedback, requests for additional features, documen-
tation, or even code contributions. This is made simple through
the GitHub hosting of the project at https://github.com/
cosmicpy/cosmicpy

Appendix B: Computing the SFB covariance matrix

Performing a Fisher analysis requires computing the SFB co-
variance matrix, and more importantly, computing the inverse of
this matrix. This last step can be quite challenging as the co-
variance of the spherical Fourier-Bessel coefficients is a contin-
uous quantity C`(k, k′). Two approaches can be considered to
define a covariance matrix in this situation: (i) only using the di-
agonal covariance C`(ki, ki) at discrete points ki (advocated by
Nicola et al. 2014); or (ii) binning C`(k, k′) into bins of size ∆k.
However, by neglecting the correlation between neighbouring
wavenumbers, the first approach overestimates the information
content if the interval between wavenumbers is too small, while
the second approach would lose information for bins of increas-
ing size and become numerically challenging to invert for bins
too small. Another problem is to select the largest scale kmin to
include in the covariance matrix. Indeed, C`(k, k) becomes ex-
tremely small and numerically challenging to compute for very
small k, but small wavenumbers can still potentially contribute
to the Fisher information. A careful study is necessary to select
a kmin that does not lose information.

Instead, using the kln sampling defined by Eq. (23) natu-
rally introduces a minimum wavenumber and a discrete sam-
pling of scales that preserves all the information. As an added
benefit, this approach yields numerically invertible covariance
matrices in practice for sensible choices of the boundary con-
dition rmax. Indeed, as kln =

qln
rmax

, the choice of cut-off radius
sets the fineness of the C`(n, n′) matrix and affects its condition
number. However, we find that the Fisher information remains
largely unaffected by varying rmax above a certain distance be-
cause cutting the very end of the galaxy distribution has little
effect. In practice, we have arbitrarily set rmax to the comoving
distance at which φ(r) reaches 10−5 of its maximum value. This
choice has proven stable in all situations considered in this work.
The robustness of our computation of the Fisher matrix with re-
spect to the choice of rmax is illustrated in Fig. B.1, where we
show the contributions of each angular mode to the Fisher ma-
trix element FSFB

w0w0
. Our empirical choice for rmax in this case is

5420 h−1 Mpc, but the results are not affected by increasing rmax
to 5700 h−1 Mpc even more.
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Fig. B.1. Contribution to the SFB Fisher matrix element FSFB
w0w0

as a func-
tion of angular mode, computed with different values of rmax. The ex-
cellent agreement between the two curves shows that our computation
of the Fisher matrix is robust to our arbitrary choice of rmax.

Appendix C: Deriving the spherical Fourier-Bessel
shot noise power spectrum

Here, we derive the expression of the shot noise by discretis-
ing the survey in cells that either contain one or zero galaxies
(Peebles 1980). This method was used in Heavens et al. (2006)
to yield the expression of the shot noise in the case of 3D cosmic
shear. We considered a point process defined on small cells c,
each of which contains nc = 0 or 1 depending on whether the
cell contains a galaxy or not:

n(r) =
1
V

∑
c

ncδc(r), (C.1)

where δc(r) = 1 if r is within the cell c, 0 otherwise, and where nc
fulfils (Peebles 1980)

〈nc〉 = 〈n2
c〉 = ρ̄obs

g φ(rc)∆c, (C.2)

where ∆c is the volume of cell c and ρ̄obs
g φ(rc) is the average num-

ber density of galaxies of the survey at distance rc. Furthermore,
the cross-term for c , d is

〈ncnd〉 = ρ̄obs
g

2
φ(rc)φ(rd)∆c∆d

[
1 + ξ(|rc − rd |)

]
. (C.3)

The SFB expansion of the density field can now be expressed as
a sum over small cells c:

n`m(k) =

√
2
π

∑
c

nck j`(krc)Y`m(Ωc). (C.4)

From this expression, we can derive the two-point correlation
function of this field:

〈n`m(k)n`′m′ (k′)〉 =
2
π

∑
c,d

〈ncnd〉kk′ j`(krc) j`′ (k′rd)

× Ym
`

(Ωc)Ym′
`′ (Ωd) (C.5)

=
2
π

∑
c=d

n̄φ(rc)∆ckk′ j`(krc) j`′ (k′rc) (C.6)

× Ym
`

(Ωc)Ym′
`′ (Ωc)

+
2
π

∑
c,d

n̄ 2 φ(rc)φ(rd)

× ∆c∆d

[
1 + ξg(|rc − rd |)

]
× kk′ j`(krc) j`′ (k′rd)Ym

`
(Ωc)Ym′

`′ (Ωd).

In the last equation, the first term for c = d contains the shot
noise contribution and the second term contains the monopole
contribution and the correlation function of the density fluc-
tuations. Returning to continuous integration by decreasing
the volume of cells ∆c, we have

〈n`m(k)n`′m′ (k′)〉
n̄ 2 =

2kk′

π

∫
φ(r)

n̄
j`(kr) j`(k′r)r2drδ``′δmm′

(C.7)

+
2
π

∫
φ(r)k j`(kr)r2dr

∫
φ(r)k′ j`′ (k′r)r2dr

× δ`0δm0δ`′0δm′0

+
2
π

"
ξg(|r − r′|)φ(r)φ(r′)kk′

× j`(kr) j`′ (k′r)Ym
`

(Ω)Ym′
`′ (Ω′)drdr′.

Therefore, in this expression, we recognize three terms:

– the shot noise contribution, only for l = l′ and m = m′:

2kk′

πn̄

∫
φ(r, k′) j`(kr) j`(k′r)r2dr, (C.8)

– the monopole contribution, only for l = 0 and m = 0:

M`m(k)M`′m′ (k′), (C.9)

– the contribution from the power spectrum, only for l = l′
and m = m′:

C`(k, k′). (C.10)

where C`(k, k′) is defined by Eq. (17) and Mlm(k) can be
written as√

2
π

∫
φ(r)k j`(kr)r2drδ`0δm0. (C.11)
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