28 research outputs found

    Searching for eV-scale sterile neutrinos with eight years of atmospheric neutrinos at the IceCube neutrino telescope

    Get PDF
    We report in detail on searches for eV-scale sterile neutrinos, in the context of a 3+1 model, using eight years of data from the IceCube neutrino telescope. By analyzing the reconstructed energies and zenith angles of 305,735 atmospheric ΜΌ\nu_\mu and ΜˉΌ\bar{\nu}_\mu events we construct confidence intervals in two analysis spaces: sin⁥2(2Ξ24)\sin^2 (2\theta_{24}) vs. Δm412\Delta m^2_{41} under the conservative assumption Ξ34=0\theta_{34}=0; and sin⁥2(2Ξ24)\sin^2(2\theta_{24}) vs. sin⁥2(2Ξ34)\sin^2 (2\theta_{34}) given sufficiently large Δm412\Delta m^2_{41} that fast oscillation features are unresolvable. Detailed discussions of the event selection, systematic uncertainties, and fitting procedures are presented. No strong evidence for sterile neutrinos is found, and the best-fit likelihood is consistent with the no sterile neutrino hypothesis with a p-value of 8\% in the first analysis space and 19\% in the second.Comment: This long-form paper is a companion to the letter "An eV-scale sterile neutrino search using eight years of atmospheric muon neutrino data from the IceCube Neutrino Observatory". v2: update other experiments contours on results plo

    An eV-scale sterile neutrino search using eight years of atmospheric muon neutrino data from the IceCube Neutrino Observatory

    Get PDF
    The results of a 3+1 sterile neutrino search using eight years of data from the IceCube Neutrino Observatory are presented. A total of 305,735 muon neutrino events are analyzed in reconstructed energy-zenith space to test for signatures of a matter-enhanced oscillation that would occur given a sterile neutrino state with a mass-squared differences between 0.01\,eV2^2 and 100\,eV2^2. The best-fit point is found to be at sin⁡2(2ξ24)=0.10\sin^2(2\theta_{24})=0.10 and Δm412=4.5eV2\Delta m_{41}^2 = 4.5{\rm eV}^2, which is consistent with the no sterile neutrino hypothesis with a p-value of 8.0\%.Comment: 11 pages, 5 figures. This letter is supported by the long-form paper "Searching for eV-scale sterile neutrinos with eight years of atmospheric neutrinos at the IceCube neutrino telescope," also appearing on arXiv. Digital data release available at: https://github.com/icecube/HE-Sterile-8year-data-releas

    Search for PeV gamma-ray emission from the southern hemisphere with 5 Yr of data from the IceCube observatory

    Get PDF
    The measurement of diffuse PeV gamma-ray emission from the Galactic plane would provide information about the energy spectrum and propagation of Galactic cosmic rays, and the detection of a pointlike source of PeV gamma-rays would be strong evidence for a Galactic source capable of accelerating cosmic rays up to at least a few PeV. This paper presents several unbinned maximum-likelihood searches for PeV gamma-rays in the Southern Hemisphere using 5 yr of data from the IceTop air shower surface detector and the in-ice array of the IceCube Observatory. The combination of both detectors takes advantage of the low muon content and deep shower maximum of gamma-ray air showers and provides excellent sensitivity to gamma-rays between similar to 0.6 and 100 PeV. Our measurements of pointlike and diffuse Galactic emission of PeV gamma-rays are consistent with the background, so we constrain the angle-integrated diffuse gamma-ray flux from the Galactic plane at 2 PeV to 2.61 x 10(-19) cm(-2) s(-1) TeV-1 at 90% confidence, assuming an E-3 spectrum, and we estimate 90% upper limits on pointlike emission at 2 PeV between 10(-21) and 10(-20) cm(-2) s(-1) TeV-1 for an E-2 spectrum, depending on decl. Furthermore, we exclude unbroken power-law emission up to 2 PeV for several TeV gamma-ray sources observed by the High Energy Spectroscopic System and calculate upper limits on the energy cutoffs of these sources at 90% confidence. We also find no PeV gamma-rays correlated with neutrinos from IceCube's high-energy starting event sample. These are currently the strongest constraints on PeV gamma-ray emission

    Multi-messenger Observations of a Binary Neutron Star Merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ∌ 1.7 {{s}} with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of {40}-8+8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 {M}ÈŻ . An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ∌ 40 {{Mpc}}) less than 11 hours after the merger by the One-Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ∌10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ∌ 9 and ∌ 16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC 4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta.</p

    Kosmische Strahlung macht Schule

    No full text

    Neutrino analysis of the 2010 september crab nebula flare and time-integrated constraints on neutrino emission from the crab using IceCube

    Get PDF
    We present the results for a search of high-energy muon neutrinos with the IceCube detector in coincidence with the Crab nebula flare reported on September 2010 by various experiments. Due to the unusual flaring state of the otherwise steady source we performed a prompt analysis of the 79-string configuration data to search for neutrinos that might be emitted along with the observed gamma-rays. We performed two different and complementary data selections of neutrino events in the time window of 10 days around the flare. One event selection is optimized for discovery of E^-2 neutrino spectrum typical of 1st order Fermi acceleration. A similar event selection has also been applied to the 40-string data to derive the time-integrated limits to the neutrino emission from the Crab. The other event selection was optimized for discovery of neutrino spectra with softer spectral index and TeV energy cut-offs as observed for various galactic sources in gamma-rays. The 90% CL best upper limits on the Crab flux during the 10 day flare are 4.73 x 10^-11 cm-2 s-1 TeV-1 for an E^-2 neutrino spectrum and 2.50 x 10^-10 cm-2 s-1 TeV-1 for a softer neutrino spectra of E-2.7, as indicated by Fermi measurements during the flare. IceCube has also set a time-integrated limit on the neutrino emission of the Crab using 375.5 days of livetime of the 40-string configuration data. This limit is compared to existing models of neutrino production from the Crab and its impact on astrophysical parameters is discussed. The most optimistic predictions of some models are already rejected by the IceCube neutrino telescope with more than 90% CL
    corecore