328 research outputs found

    The plasma nitric oxide and homocysteine levels and their association with insulin resistance in South Indian women with polycystic ovary syndrome

    Get PDF
    Background: Women with polycystic ovary syndrome (PCOS) exhibit features of the metabolic syndrome apart from low-grade chronic inflammation and endothelial dysfunction and may be at increased risk for cardiovascular disease (CVD). The Nitric oxide (NO) and Homocysteine (Hcy) are important plasma markers of endothelial dysfunction, an early marker of atherosclerosis. There are no Indian studies on NO and Hcy levels in women with PCOS and their association with Insulin Resistance (IR). Therefore the present study is to estimate plasma levels of NO and Hcy in south Indian women with PCOS and association with insulin resistance.Methods: 104 women with PCOS and 95 healthy age matched control subject were enrolled in the study. Standard physical methods and Chemiluminescent Immunoassay technique were employed for estimation of Anthropometric parameter and plasma sex hormones respectively. Fasting insulin, glucose, NO and Hcy were measured by standard methods. Insulin resistance was evaluated by using Homeostasis Model Assessment for Insulin Resistance (HOMA- IR)Results: Women with PCOS had significantly higher insulin resistance (P<0.01), Hcy (p<0.05) and lower NO levels (P<0.05), IR was positively correlated with Hcy (r= 0.610, p<0.01) and negatively correlated with NO (r= -0.285; p<0.01)Conclusions: Our data revealed that South Indian women with PCOS had elevated IR and homocyeteine and lowered NO levels

    Evaluation of fatty acid profile with special reference to hypertension intake from marine edible fishes

    Get PDF
    The present study describes the changes in fatty acid profile in hypertension patients by up taking the marine edible fishes Elutherenema tetradactylum, Sphyraena obtusata and Siganus javus because these marine edible fishes are rich in ? –fatty acids.  In this study the total cholesterol, HDL and LDL were significantly decreased from 211.9 – 202.1 mg/dl, 177-159.6 mg/dl. The palmitic acid (C16:0) was found significantly higher in all of peoples compared with other SFAs. This study revealed that the most abundant in individual FAs 16:0,18:0,18:1 n9 and 20:2 n6 were present in blood in both before and after dietary intake. The minimal changes of SFAs levels were decreased averagely from 59.2 to 52.2%. In addition to above PUFAs also increased from 27.7-30.5%. The essential FAs like ALA (C18:3n3), EPA (C20:5n3) and DHA (C22:6n3) were accounting in the range of 2.64-2.92%, 3.67-3.94% and 3.65-4.38%. Omega – 6/3 ratio were recorded from 1.77-2.45%. This study proves the marine edible fishes reduce the hypertension of the patients. Keywords: Edible fishes, ? –fatty acids, SFAs, HDL and LD

    The database of experimentally supported targets: a functional update of TarBase

    Get PDF
    TarBase5.0 is a database which houses a manually curated collection of experimentally supported microRNA (miRNA) targets in several animal species of central scientific interest, plants and viruses. MiRNAs are small non-coding RNA molecules that exhibit an inhibitory effect on gene expression, interfering with the stability and translational efficiency of the targeted mature messenger RNAs. Even though several computational programs exist to predict miRNA targets, there is a need for a comprehensive collection and description of miRNA targets with experimental support. Here we introduce a substantially extended version of this resource. The current version includes more than 1300 experimentally supported targets. Each target site is described by the miRNA that binds it, the gene in which it occurs, the nature of the experiments that were conducted to test it, the sufficiency of the site to induce translational repression and/or cleavage, and the paper from which all these data were extracted. Additionally, the database is functionally linked to several other relevant and useful databases such as Ensembl, Hugo, UCSC and SwissProt. The TarBase5.0 database can be queried or downloaded from http://microrna.gr/tarbase

    Model of fibrolamellar hepatocellular carcinomas reveals striking enrichment in cancer stem cells

    Get PDF
    The aetiology of human fibrolamellar hepatocellular carcinomas (hFL-HCCs), cancers occurring increasingly in children to young adults, is poorly understood. We present a transplantable tumour line, maintained in immune-compromised mice, and validate it as a bona fide model of hFL-HCCs by multiple methods. RNA-seq analysis confirms the presence of a fusion transcript (DNAJB1-PRKACA) characteristic of hFL-HCC tumours. The hFL-HCC tumour line is highly enriched for cancer stem cells as indicated by limited dilution tumourigenicity assays, spheroid formation and flow cytometry. Immunohistochemistry on the hFL-HCC model, with parallel studies on 27 primary hFL-HCC tumours, provides robust evidence for expression of endodermal stem cell traits. Transcriptomic analyses of the tumour line and of multiple, normal hepatic lineage stages reveal a gene signature for hFL-HCCs closely resembling that of biliary tree stem cells-newly discovered precursors for liver and pancreas. This model offers unprecedented opportunities to investigate mechanisms underlying hFL-HCCs pathogenesis and potential therapies

    Functional Transcriptomics in Diverse Intestinal Epithelial Cell Types Reveals Robust MicroRNA Sensitivity in Intestinal Stem Cells to Microbial Status

    Get PDF
    Gut microbiota play an important role in regulating the development of the host immune system, metabolic rate, and at times, disease pathogenesis. The factors and mechanisms that mediate interactions between microbiota and the intestinal epithelium are not fully understood. We provide novel evidence that microbiota may control intestinal epithelial stem cell (IESC) proliferation in part through microRNAs (miRNAs). We demonstrate that miRNA profiles differ dramatically across functionally distinct cell types of the mouse jejunal intestinal epithelium and that miRNAs respond to microbiota in a highly cell type-specific manner. Importantly, we also show that miRNAs in IESCs are more prominently regulated by microbiota compared with miRNAs in any other intestinal epithelial cell subtype. We identify miR-375 as one miRNA that is significantly suppressed by the presence of microbiota in IESCs. Using a novel method to knockdown gene and miRNA expression ex vivo enteroids, we demonstrate that we can knock down gene expression in Lgr5+ IESCs. Furthermore, when we knock down miR-375 in IESCs, we observe significantly increased proliferative capacity. Understanding the mechanisms by which microbiota regulate miRNA expression in IESCs and other intestinal epithelial cell subtypes will elucidate a critical molecular network that controls intestinal homeostasis and, given the heightened interest in miRNA-based therapies, may offer novel therapeutic strategies in the treatment of gastrointestinal diseases associated with altered IESC function

    Comprehensive analysis of The Cancer Genome Atlas reveals a unique gene and non-coding RNA signature of fibrolamellar carcinoma

    Get PDF
    Fibrolamellar carcinoma (FLC) is a unique liver cancer primarily affecting young adults and characterized by a fusion event between DNAJB1 and PRKACA. By analyzing RNA-sequencing data from The Cancer Genome Atlas (TCGA) for >9,100 tumors across ~30 cancer types, we show that the DNAJB1-PRKACA fusion is specific to FLCs. We demonstrate that FLC tumors (n = 6) exhibit distinct messenger RNA (mRNA) and long intergenic non-coding RNA (lincRNA) profiles compared to hepatocellular carcinoma (n = 263) and cholangiocarcinoma (n = 36), the two most common liver cancers. We also identify a set of mRNAs (n = 16) and lincRNAs (n = 4), including LINC00473, that distinguish FLC from ~25 other liver and non-liver cancer types. We confirm this unique FLC signature by analysis of two independent FLC cohorts (n = 20 and 34). Lastly, we validate the overexpression of one specific gene in the FLC signature, carbonic anhydrase XII (CA12), at the protein level by western blot and immunohistochemistry. Both the mRNA and lincRNA signatures support a major role for protein kinase A (PKA) signaling in shaping the FLC gene expression landscape, and present novel candidate FLC oncogenes that merit further investigation

    PolymiRTS Database 2.0: linking polymorphisms in microRNA target sites with human diseases and complex traits

    Get PDF
    The polymorphism in microRNA target site (PolymiRTS) database aims to identify single-nucleotide polymorphisms (SNPs) that affect miRNA targeting in human and mouse. These polymorphisms can disrupt the regulation of gene expression by miRNAs and are candidate genetic variants responsible for transcriptional and phenotypic variation. The database is therefore organized to provide links between SNPs in miRNA target sites, cis-acting expression quantitative trait loci (eQTLs), and the results of genome-wide association studies (GWAS) of human diseases. Here, we describe new features that have been integrated in the PolymiRTS database, including: (i) polymiRTSs in genes associated with human diseases and traits in GWAS, (ii) polymorphisms in target sites that have been supported by a variety of experimental methods and (iii) polymorphisms in miRNA seed regions. A large number of newly identified microRNAs and SNPs, recently published mouse phenotypes, and human and mouse eQTLs have also been integrated into the database. The PolymiRTS database is available at http://compbio.uthsc.edu/miRSNP/

    A Systematic Mapping Approach of 16q12.2/FTO and BMI in More Than 20,000 African Americans Narrows in on the Underlying Functional Variation: Results from the Population Architecture using Genomics and Epidemiology (PAGE) Study

    Get PDF
    Genetic variants in intron 1 of the fat mass- and obesity-associated (FTO) gene have been consistently associated with body mass index (BMI) in Europeans. However, follow-up studies in African Americans (AA) have shown no support for some of the most consistently BMI-associated FTO index single nucleotide polymorphisms (SNPs). This is most likely explained by different race-specific linkage disequilibrium (LD) patterns and lower correlation overall in AA, which provides the opportunity to fine-map this region and narrow in on the functional variant. To comprehensively explore the 16q12.2/FTO locus and to search for second independent signals in the broader region, we fine-mapped a 646-kb region, encompassing the large FTO gene and the flanking gene RPGRIP1L by investigating a total of 3,756 variants (1,529 genotyped and 2,227 imputed variants) in 20,488 AAs across five studies. We observed associations between BMI and variants in the known FTO intron 1 locus: the SNP with the most significant p-value, rs56137030 (8.3×10-6) had not been highlighted in previous studies. While rs56137030was correlated at r2>0.5 with 103 SNPs in Europeans (including the GWAS index SNPs), this number was reduced to 28 SNPs in AA. Among rs56137030 and the 28 correlated SNPs, six were located within candidate intronic regulatory elements, including rs1421085, for which we predicted allele-specific binding affinity for the transcription factor CUX1, which has recently been implicated in the regulation of FTO. We did not find strong evidence for a second independent signal in the broader region. In summary, this large fine-mapping study in AA has substantially reduced the number of common alleles that are likely to be functional candidates of the known FTO locus. Importantly our study demonstrated that comprehensive fine-mapping in AA provides a powerful approach to narrow in on the functional candidate(s) underlying the initial GWAS findings in European populations

    Transcriptional targets of the schizophrenia risk gene MIR137

    Get PDF
    Genome-wide association studies (GWAS) have strongly implicated MIR137 (the gene encoding the microRNA miR-137) in schizophrenia. A parsimonious hypothesis is that a pathway regulated by miR-137 is important in the etiology of schizophrenia. Full evaluation of this hypothesis requires more definitive knowledge about biological targets of miR-137, which is currently lacking. Our goals were to expand knowledge of the biology of miR-137 by identifying its empirical targets, and to test whether the resulting lists of direct and indirect targets were enriched for genes and pathways involved in risk for schizophrenia. We overexpressed miR-137 in a human neural stem cell line and analyzed gene expression changes at 24 and 48 h using RNA sequencing. Following miR-137 overexpression, 202 and 428 genes were differentially expressed after 24 and 48 h. Genes differentially expressed at 24 h were enriched for transcription factors and cell cycle genes, and differential expression at 48 h affected a wider variety of pathways. Pathways implicated in schizophrenia were upregulated in the 48 h findings (major histocompatibility complex, synapses, FMRP interacting RNAs and calcium channels). Critically, differentially expressed genes at 48 h were enriched for smaller association P-values in the largest published schizophrenia GWAS. This work provides empirical support for a role of miR-137 in the etiology of schizophrenia
    corecore