699 research outputs found

    On the theory of resonant susceptibility of dielectric glasses in magnetic field

    Full text link
    The anomalous magnetic field dependence of dielectric properties of insulating glasses in the temperature interval 10mK<T<50mK10mK<T<50mK is considered. In this temperature range, the dielectric permittivity is defined by the resonant contribution of tunneling systems. The external magnetic field regulates nuclear spins of tunneling atoms. This regulation suppresses a nuclear quadrupole interaction of these spins with lattice and, thus, affects the dielectric response of tunneling systems. It is demonstrated that in the absence of an external magnetic field the nuclear quadrupole interaction bb results in the correction to the permittivity δχb/T\delta\chi\sim| b| /T in the temperature range of interest. An application of a magnetic field results in a sharp increase of this correction approximately by a factor of two when the Zeeman splitting mm approaches the order of b| b| . Further increase of the magnetic field results in a relatively smooth decrease in the correction until the Zeeman splitting approaches the temperature. This smooth dependence results from tunneling accompanied by a change of the nuclear spin projection. As the magnetic field surpasses the temperature, the correction vanishes. The results obtained in this paper are compared with experiment. A new mechanism of the low temperature nuclear spin-lattice relaxation in glasses is considered.Comment: 9 Pages, 5 Figures, To be submitted to the Physical Review B, please send comment

    Effect of nuclear quadrupole interactions on the dynamics of two-level systems in glasses

    Full text link
    The standard tunneling model describes quite satisfactorily the thermal properties of amorphous solids at temperatures T<1KT<1K in terms of an ensemble of two-level systems possessing logarithmically uniform distribution over their tunneling amplitudes and uniform distribution over their asymmetry energies. In particular, this distribution explains the observable logarithmic temperature dependence of the dielectric constant. Yet, experiments have shown that at ultralow temperatures T<5mKT<5mK such a temperature behavior breaks down and the dielectric constant becomes temperature independent (plateau effect). In this letter we suggest an explanation of this behavior exploiting the effect of the nuclear quadrupole interaction on tunneling. We show that below a temperature corresponding to the characteristic energy of the nuclear quadrupole interaction the effective tunneling amplitude is reduced by a small overlap factor of the nuclear quadrupole ground states in the left and right potential wells of the tunneling system. It is just this reduction that explains the plateau effect . We predict that the application of a sufficiently large magnetic field B>10TB>10T should restore the logarithmic dependence because of the suppression of the nuclear quadrupole interaction.Comment: To appear in the Physical Review Letter

    Approximate calculation of the basic parameters of energodinamic processes starting and stopping planetary drive

    Get PDF
    The paper presents a simplified engineering method, which at the stage of conceptual design allows you to define the parameters of the preliminary processes starting and stopping of the planetary drive. Introduction of the proposed simplifications, gives an opportunity to solve a differential equation of motion of the inertial elements of the dynamic model of the drive.В статье представлена упрощенная инженерная методика, которая на стадии эскизного проектирования позволяет определять предварительные параметры процессов включения и остановки планетарного привода. Введение предложенных упрощений дает возможность решить дифференциальное уравнение движения инерционных элементов динамической модели привода

    Thermoelectric behavior of BaZr0.9Y0.1O3−d proton conducting electrolyte

    Get PDF
    BaZr0.9Y0.1O3-δ (BZY10), a promising proton conducting material, exhibits p-type conduction under oxidative conditions. Holes in BZY10 are of the small polaron type. However, there is no clear understanding at which places in the lattice they are localized. The main objectives of this work were, therefore, to discuss the nature of electronic defects in BZY10 on the basis of the combined measurements of the thermo-EMF and conductivity. Total electrical conductivity and Seebeck coefficient of BZY10 were simultaneously studied depending on partial pressures of oxygen (pO2), water (pH2O) and temperature (T). The model equation for total conductivity and Seebeck coefficient derived on the basis of the proposed defect chemical approach was successfully fitted to the experimental data. Transference numbers of all the charge carriers in BZY10 were calculated. The heat of transport of oxide ions was found to be about one half the activation energy of their mobility, while that of protons was almost equal to the activation energy of their mobility. The results of the Seebeck coefficient modeling indicate that cation impurities, rather than oxygen sites, should be considered as a place of hole localization. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.Russian Science Foundation, RSF: 18-73-00022Funding: This work was supported by the Russian Science Foundation (project No. 18-73-00022

    Rehabilitation of athletes’ after Achilles tendon surgery

    Get PDF
    Frequency of Achilles tendon injury increases. The lack of standardized methods of rehabilitation after surgery on the Achilles tendon leads to increased risk of repeated injury of tendon and reduces the possibility of coming round to physical activity. Recovery of function is the main task of rehabilitation programs, especially in athletes. This article sets out the basic principles of remedial actions. It can be used with patients of different levels of physical activity and it can be modified according to the task performed and features of surgical treatment in order to achieve optimal results
    corecore