122 research outputs found

    Foundations Performance of Large Diameter Tanks

    Get PDF
    The paper presents a detailed case history of foundation performance of six 60-m diameter, 15-m high, floating roof fuel oil tanks and six 96.8-m diameter, 20-m high, fixed roof process water tanks built for a large power plant. Tank walls were supported by concrete ringwall footings. General subsurface conditions at the site are discussed, along with proposed site grading and the rationale for tank foundation selection. Because vibro-replacement improvement of site soils had been used beneath settlement-sensitive structures, there was skepticism regarding the decision to support the tanks on unimproved soils. To allay doubts about the adequacy of tank foundation performance, a staged hydrotesting procedure and an extensive settlement monitoring program were developed and implemented. The excellent tank hydrotesting results demonstrated that ground improvement was not needed due to the more settlement-tolerant nature of the tanks

    Origination of the Split Structure of Spliceosomal Genes from Random Genetic Sequences

    Get PDF
    The mechanism by which protein-coding portions of eukaryotic genes came to be separated by long non-coding stretches of DNA, and the purpose for this perplexing arrangement, have remained unresolved fundamental biological problems for three decades. We report here a plausible solution to this problem based on analysis of open reading frame (ORF) length constraints in the genomes of nine diverse species. If primordial nucleic acid sequences were random in sequence, functional proteins that are innately long would not be encoded due to the frequent occurrence of stop codons. The best possible way that a long protein-coding sequence could have been derived was by evolving a split-structure from the random DNA (or RNA) sequence. Results of the systematic analyses of nine complete genome sequences presented here suggests that perhaps the major underlying structural features of split-genes have evolved due to the indigenous occurrence of split protein-coding genes in primordial random nucleotide sequence. The results also suggest that intron-rich genes containing short exons may have been the original form of genes intrinsically occurring in random DNA, and that intron-poor genes containing long exons were perhaps derived from the original intron-rich genes

    A Remotely Operable Facility for Fabrication of Fuel Pins for test Irradiation

    Get PDF
    AbstractA laboratory scale facility has been set up for fabrication of test fuel pins through sol-gel route for irradiation in FBTR, Kalpakkam. The facility is a train of glove boxes fitted with master slave manipulators for carrying out various operations involved in the fuel fabricat ion process. The paper describes the design features of the equipment and mechanisms for automation, developed for microsphere production and other processes. The design features include control system and vision systems for man- machine interface

    Association Analysis of SSR Markers with Phenology, Grain, and Stover-Yield Related Traits in Pearl Millet (Pennisetum glaucum (L.) R. Br.)

    Get PDF
    Pearl millet is a staple food crop for millions of people living in the arid and semi-arid tropics. Molecular markers have been used to identify genomic regions linked to traits of interest by conventional QTL mapping and association analysis. Phenotypic recurrent selection is known to increase frequencies of favorable alleles and decrease those unfavorable for the traits under selection. This study was undertaken (i) to quantify the response to recurrent selection for phenotypic traits during breeding of the pearl millet open-pollinated cultivar “CO (Cu) 9” and its four immediate progenitor populations and (ii) to assess the ability of simple sequence repeat (SSR) marker alleles to identify genomic regions linked to grain and stover yield-related traits in these populations by association analysis. A total of 159 SSR alleles were detected across 34 selected single-copy SSR loci. SSR marker data revealed presence of subpopulations. Association analysis identified genomic regions associated with flowering time located on linkage group (LG) 6 and plant height on LG4, LG6, and LG7. Marker alleles on LG6 were associated with stover yield, and those on LG7 were associated with grain yield. Findings of this study would give an opportunity to develop marker-assisted recurrent selection (MARS) or marker-assisted population improvement (MAPI) strategies to increase the rate of gain for pearl millet populations undergoing recurrent selection

    Targeted Genome-Wide Enrichment of Functional Regions

    Get PDF
    Only a small fraction of large genomes such as that of the human contains the functional regions such as the exons, promoters, and polyA sites. A platform technique for selective enrichment of functional genomic regions will enable several next-generation sequencing applications that include the discovery of causal mutations for disease and drug response. Here, we describe a powerful platform technique, termed “functional genomic fingerprinting” (FGF), for the multiplexed genomewide isolation and analysis of targeted regions such as the exome, promoterome, or exon splice enhancers. The technique employs a fixed part of a uniquely designed Fixed-Randomized primer, while the randomized part contains all the possible sequence permutations. The Fixed-Randomized primers bind with full sequence complementarity at multiple sites where the fixed sequence (such as the splice signals) occurs within the genome, and multiplex amplify many regions bounded by the fixed sequences (e.g., exons). Notably, validation of this technique using cardiac myosin binding protein-C (MYBPC3) gene as an example strongly supports the application and efficacy of this method. Further, assisted by genomewide computational analyses of such sequences, the FGF technique may provide a unique platform for high-throughput sample production and analysis of targeted genomic regions by the next-generation sequencing techniques, with powerful applications in discovering disease and drug response genes

    Origin of Life

    Full text link
    The evolution of life has been a big enigma despite rapid advancements in the fields of biochemistry, astrobiology, and astrophysics in recent years. The answer to this puzzle has been as mind-boggling as the riddle relating to evolution of Universe itself. Despite the fact that panspermia has gained considerable support as a viable explanation for origin of life on the Earth and elsewhere in the Universe, the issue remains far from a tangible solution. This paper examines the various prevailing hypotheses regarding origin of life like abiogenesis, RNA World, Iron-sulphur World, and panspermia; and concludes that delivery of life-bearing organic molecules by the comets in the early epoch of the Earth alone possibly was not responsible for kick-starting the process of evolution of life on our planet.Comment: 32 pages, 8 figures,invited review article, minor additio

    Progress in the utilization of Cajanus platycarpus Benth.) Maesen in pigeonpea improvement

    Get PDF
    Cultivated pigeonpea (Cajanus cajan L. Millsp.) has a narrow genetic base; hence, utilization of wild relatives in the crossing programme would broaden its genetic base and introduce useful traits. Cajanus platycarpus (Benth.) Maesen, an annual wild relative from the tertiary gene pool, was successfully crossed with the cultigen, utilizing hormone-aided pollinations, embryo rescue and tissue culture techniques, and backcrossed using cultigen as the recurrent parent. Advance generation progeny showed a range of useful traits such as resistance to phytophthora blight, pod borer, bruchid and podfly resistance. Variation was also observed for plant type, growth habit and seed colour. A new source of cytoplasmic male sterility was identified in one of the progeny lines. Molecular analysis of the progeny after four backcrosses showed the presence of genomic segments from C. platycarpus accompanied by the presence of recombinant DNA sequences signifying recombination between the parental genome

    Valorization potential of tomato (Solanum lycopersicum L.) seed : nutraceutical quality, food properties, safety aspects, and application as a health-promoting ingredient in foods

    Get PDF
    The tomato is a member of the Solanaceae family and is a crop that is widely cultivated around the world due to its sweet, sour, salty, juicy, and nutritious berries. The processing of tomatoes generates a significant amount of waste in the form of tomato pomace, which includes seeds and skin. Tomato seeds are reservoirs of various nutrients, such as proteins, carbohydrates, lipids, minerals, and vitamins. These components make tomato seeds an important ingredient for application in food matrices. This review discusses the functional food properties of tomato seeds and their scope of utilization as major ingredients in the functional food industry. In addition, this review describes the development of tomato seeds as a potential nutritional and nutraceutical ingredient, along with recent updates on research conducted worldwide. This is the first review that demonstrates the nutritional profile of tomato seeds along with its diverse functional food properties and application as a functional food ingredient

    Tomato (Solanum lycopersicum L.) seed : a review on bioactives and biomedical activities

    Get PDF
    The processing of tomato fruit into puree, juices, ketchup, sauces, and dried powders generates a significant amount of waste in the form of tomato pomace, which includes seeds and skin. Tomato processing by-products, particularly seeds, are reservoirs of health-promoting macromolecules, such as proteins (bioactive peptides), carotenoids (lycopene), polysaccharides (pectin), phytochemicals (flavonoids), and vitamins (α-tocopherol). Health-promoting properties make these bioactive components suitable candidates for the development of novel food and nutraceutical products. This review comprehensively demonstrates the bioactive compounds of tomato seeds along with diverse biomedical activities of tomato seed extract (TSE) for treating cardiovascular ailments, neurological disorders, and act as antioxidant, anticancer, and antimicrobial agent. Utilization of bioactive components can improve the economic feasibility of the tomato processing industry and may help to reduce the environmental pollution generated by tomato by-products

    A General Definition and Nomenclature for Alternative Splicing Events

    Get PDF
    Understanding the molecular mechanisms responsible for the regulation of the transcriptome present in eukaryotic cells is one of the most challenging tasks in the postgenomic era. In this regard, alternative splicing (AS) is a key phenomenon contributing to the production of different mature transcripts from the same primary RNA sequence. As a plethora of different transcript forms is available in databases, a first step to uncover the biology that drives AS is to identify the different types of reflected splicing variation. In this work, we present a general definition of the AS event along with a notation system that involves the relative positions of the splice sites. This nomenclature univocally and dynamically assigns a specific “AS code” to every possible pattern of splicing variation. On the basis of this definition and the corresponding codes, we have developed a computational tool (AStalavista) that automatically characterizes the complete landscape of AS events in a given transcript annotation of a genome, thus providing a platform to investigate the transcriptome diversity across genes, chromosomes, and species. Our analysis reveals that a substantial part—in human more than a quarter—of the observed splicing variations are ignored in common classification pipelines. We have used AStalavista to investigate and to compare the AS landscape of different reference annotation sets in human and in other metazoan species and found that proportions of AS events change substantially depending on the annotation protocol, species-specific attributes, and coding constraints acting on the transcripts. The AStalavista system therefore provides a general framework to conduct specific studies investigating the occurrence, impact, and regulation of AS
    corecore