120 research outputs found

    Attentional bias to social-evaluative threat in body image dissatisfaction

    Get PDF
    The study aimed to examine attentional biases to social evaluative threat in individuals with a diagnosis of Body Dysmorphic Disorder (BDD). Given the high degree of social evaluative anxiety in this population, it was expected that BDD participants, similar to people with high levels of social anxiety, would exhibit a stronger attentional bias to social threat than people without these difficulties. 13 individuals (ten women) with a diagnosis of BDD and 13 individuals (ten women) without a mental health diagnosis took the ‘face-in-the-crowd’ task. This involved detecting an emotionally incongruent face in an array (crowd) of 12 faces. Faster detection of a threatening face (angry or disgusted) in an array of happy or neutral faces, implied an attentional bias to threat. Slower reaction times in angry or disgusted crowds implied that participants were devoting more attentional resources to processing threat. A number of 2 x 2 ANOVAS were conducted with Group (BDD vs. Control) as between-subject factors and Stimuli Type (Angry vs. non-threatening) as within-subject factors. Contrary to predictions, the study found that while both BDD and Control group participants showed an attentional bias to threat, there were no significant between group differences. As the study included a very small sample, conclusions were drawn with caution. Clinical and research implications are presented

    AAV9-mediated SH3TC2 gene replacement therapy targeted to Schwann cells for the treatment of CMT4C

    Get PDF
    Type 4C Charcot-Marie-Tooth (CMT4C) demyelinating neuropathy is caused by autosomal recessive SH3TC2 gene mutations. SH3TC2 is highly expressed in myelinating Schwann cells. CMT4C is a childhood-onset progressive disease without effective treatment. Here, we generated a gene therapy for CMT4C mediated by an adeno-associated viral 9 vector (AAV9) to deliver the human SH3TC2 gene in the Sh3tc2−/− mouse model of CMT4C. We used a minimal fragment of the myelin protein zero (Mpz) promoter (miniMpz), which was cloned and validated to achieve Schwann cell-targeted expression of SH3TC2. Following the demonstration of AAV9-miniMpz.SH3TC2myc vector efficacy to re-establish SH3TC2 expression in the peripheral nervous system, we performed an early as well as a delayed treatment trial in Sh3tc2−/− mice. We demonstrate both after early as well as following late treatment improvements in multiple motor performance tests and nerve conduction velocities. Moreover, treatment led to normalization of the organization of the nodes of Ranvier, which is typically deficient in CMT4C patients and Sh3tc2−/− mice, along with reduced ratios of demyelinated fibers, increased myelin thickness and reduced g-ratios at both time points of intervention. Taken together, our results provide a proof of concept for an effective and potentially translatable gene replacement therapy for CMT4C treatment

    Mitochondrial dysfunction is an important cause of neurological deficits in an inflammatory model of multiple sclerosis

    Get PDF
    Neuroinflammation can cause major neurological dysfunction, without demyelination, in both multiplesclerosis (MS) and a mouse model of the disease (experimental autoimmune encephalomyelitis; EAE), but the mechanisms remain obscure. Confocal in vivo imaging of the mouse EAE spinal cord reveals that impaired neurological function correlates with the depolarisation of both the axonal mitochondria and the axons themselves. Indeed, the depolarisation parallels the expression of neurological deficit at the onset of disease, and during relapse, improving during remission in conjunction with the deficit. Mitochondrial dysfunction, fragmentation and impaired trafficking were most severe in regions of extravasated perivascular inflammatory cells. The dysfunction at disease onset was accompanied by increased expression of the rate-limiting glycolytic enzyme phosphofructokinase-2 in activated astrocytes, and by selective reduction in spinal mitochondrial complex I activity. The metabolic changes preceded any demyelination or axonal degeneration. We conclude that mitochondrial dysfunction is a major cause of reversible neurological deficits in neuroinflammatory disease, such as MS

    Arterial bicarbonate is associated with hypoxic burden and uncontrolled hypertension in obstructive sleep apnea - The ESADA cohort

    Get PDF
    Objective: Blood bicarbonate concentration plays an important role for obstructive sleep apnea (OSA) patients to maintain acid-base balance. We investigated the association between arterial standard bicarbonate ([HCO3-]) and nocturnal hypoxia as well as comorbid hypertension in OSA. Methods: A cross-sectional analysis of 3329 patients in the European Sleep Apnea Database (ESADA) was performed. Arterial blood gas analysis and lung function test were performed in conjunction with polysomnographic sleep studies. The 4% oxygen desaturation index (ODI), mean and minimum oxygen saturation (SpO2), and percentage of time with SpO2 below 90% (T90%) were used to reflect nocturnal hypoxic burden. Arterial hypertension was defined as a physician diagnosis of hypertension with ongoing antihypertensive medication. Hypertensive patients with SBP/DBP below or above 140/90 mmHg were classified as controlled-, uncontrolled hypertension, respectively. Results: The [HCO3-] level was normal in most patients (average 24.0 ± 2.5 mmol/L). ODI, T90% increased whereas mean and minimum SpO2 decreased across [HCO3-] tertiles (ANOVA, p = 0.030, <0.001, <0.001, and <0.001, respectively). [HCO3-] was independently associated with ODI, mean SpO2, minimum SpO2, and T90% after adjusting for confounders (β value [95%CI]: 1.21 [0.88–1.54], −0.16 [-0.20 to −0.11], −0.51 [-0.64 to −0.37], 1.76 [1.48–2.04], respectively, all p < 0.001). 1 mmol/L elevation of [HCO3-] was associated with a 4% increased odds of uncontrolled hypertension (OR: 1.04 [1.01–1.08], p = 0.013). Conclusion: We first demonstrated an independent association between [HCO3-] and nocturnal hypoxic burden as well as uncontrolled hypertension in OSA patients. Bicarbonate levels as an adjunctive measure provide insight into the pathophysiology of hypertension in OSA

    Lung abscess predicts the surgical outcome in patients with pleural empyema

    Get PDF
    <p>Abstract</p> <p>Objectives</p> <p>Most cases of pleural empyema are caused by pulmonary infections, which are usually combined with pneumonia or lung abscess. The mortality of patients with pleural empyema remains high (up to 20%). It also contributes to higher hospital costs and longer hospital stays. We studied pleural empyema with combined lung abscess to determine if abscess was associated with mortality.</p> <p>Methods</p> <p>From January 2004 to December 2006, we retrospectively reviewed 259 patients diagnosed with pleural empyema who received thoracscopic decortications of the pleura in a single medical center. We evaluated their clinical data and analyzed their chest computed tomography scans. Outcomes of pleural empyema were compared between groups with and without lung abscess.</p> <p>Results</p> <p>Twenty-two pleural empyema patients had lung abscesses. Clinical data showed significantly higher incidences in the lung abscess group of pre-operative leukocytosis, need for an intensive care unit stay and mortality.</p> <p>Conclusion</p> <p>Patients with pleural empyema and lung abscess have higher intensive care unit admission rate, higher mortality during 30 days and overall mortality than patients with pleural empyema. The odds ratio of lung abscess is 4.685. Physician shall pay more attention on high risk patient of lung abscess for early detection and management.</p

    Gene replacement therapy in a model of Charcot-Marie-Tooth 4C neuropathy

    Get PDF
    Charcot-Marie-Tooth disease type 4C is the most common recessively inherited demyelinating neuropathy that results from loss of function mutations in the SH3TC2 gene. Sh3tc2-/- mice represent a well characterized disease model developing early onset progressive peripheral neuropathy with hypo- and demyelination, slowing of nerve conduction velocities and disturbed nodal architecture. The aim of this project was to develop a gene replacement therapy for treating Charcot-Marie-Tooth disease type 4C to rescue the phenotype of the Sh3tc2-/- mouse model. We generated a lentiviral vector LV-Mpz.SH3TC2.myc to drive expression of the human SH3TC2 cDNA under the control of the Mpz promoter specifically in myelinating Schwann cells. The vector was delivered into 3-week-old Sh3tc2-/- mice by lumbar intrathecal injection and gene expression was assessed 4-8 weeks after injection. Immunofluorescence analysis showed presence of myc-tagged human SH3TC2 in sciatic nerves and lumbar roots in the perinuclear cytoplasm of a subset of Schwann cells, in a dotted pattern co-localizing with physiologically interacting protein Rab11. Quantitative PCR analysis confirmed SH3TC2 mRNA expression in different peripheral nervous system tissues. A treatment trial was initiated in 3 weeks old randomized Sh3tc2-/- littermate mice which received either the full or mock (LV-Mpz.Egfp) vector. Behavioural analysis 8 weeks after injection showed improved motor performance in rotarod and foot grip tests in treated Sh3tc2-/- mice compared to mock vector-treated animals. Moreover, motor nerve conduction velocities were increased in treated Sh3tc2-/- mice. On a structural level, morphological analysis revealed significant improvement in g-ratios, myelin thickness, and ratios of demyelinated fibres in lumbar roots and sciatic nerves of treated Sh3tc2-/- mice. Finally, treated mice also showed improved nodal molecular architecture and reduction of blood neurofilament light levels, a clinically relevant biomarker for axonal injury/degeneration. This study provides a proof of principle for viral gene replacement therapy targeted to Schwann cells to treat Charcot-Marie-Tooth disease type 4C and potentially other similar demyelinating inherited neuropathies

    Infrared organic photodetectors employing ultralow bandgap polymer and non-fullerene acceptors for biometric monitoring

    Get PDF
    Recent efforts in the field of organic photodetectors (OPD) have been focused on extending broadband detection into the near-infrared (NIR) region. Here, two blends of an ultralow bandgap push–pull polymer TQ-T combined with state-of-the-art non-fullerene acceptors, IEICO-4F and Y6, are compared to obtain OPDs for sensing in the NIR beyond 1100 nm, which is the cut off for benchmark Si photodiodes. It is observed that the TQ-T:IEICO-4F device has a superior IR responsivity (0.03 AW-1 at 1200 nm and −2 V bias) and can detect infrared light up to 1800 nm, while the TQ-T:Y6 blend shows a lower responsivity of 0.01 AW-1. Device physics analyses are tied with spectroscopic and morphological studies to link the superior performance of TQ-T:IEICO-4F OPD to its faster charge separation as well as more favorable donor–acceptor domains mixing. In the polymer blend with Y6, the formation of large agglomerates that exceed the exciton diffusion length, which leads to high charge recombination, is observed. An application of these devices as biometric sensors for real-time heart rate monitoring via photoplethysmography, utilizing infrared light, is demonstrated

    Positive airway pressure (PAP) treatment reduces glycated hemoglobin (HbA1c) levels in obstructive sleep apnea patients with concomitant weight loss: Longitudinal data from the ESADA

    Get PDF
    Patients with obstructive sleep apnea (OSA) are at increased risk of developing metabolic disease such as diabetes. The effects of positive airway pressure on glycemic control are contradictory. We therefore evaluated the change in glycated hemoglobin (HbA1c) in a large cohort of OSA patients after long-term treatment with positive airway pressure. HbA1c levels were assessed in a subsample of the European Sleep Apnea Database [n=1608] at baseline and at long-term follow up with positive airway pressure therapy (mean 378.9±423.0 days). In a regression analysis, treatment response was controlled for important confounders. Overall, HbA1c decreased from 5.98±1.01% to 5.93±0.98% (p=0.001). Patient subgroups with a more pronounced HbA1c response included patients with diabetes (−0.15±1.02, p=0.019), those with severe OSA baseline (−0.10±0.68, p=0.005), those with morbid obesity (−0.20±0.81, p&lt;0.001). The strongest HbA1c reduction was observed in patients with a concomitant weight reduction &gt;5 kilos (−0.38±0.99, p&lt;0.001). In robust regression analysis, severe OSA (p=0.038) and morbid obesity (p=0.005) at baseline, and weight reduction &gt;5 kilos (p&lt;0.001) during follow up were independently associated with a reduction of HbA1c following PAP treatment. In contrast, PAP treatment alone without weight reduction was not associated with significant Hb1Ac reduction. In conclusion, positive airway pressure therapy is associated with HbA1c reduction in patients with severe OSA, in morbidly obese patients. and most obviously in those with significant weight lost during the follow-up. Our study underlines the importance to combine positive airway pressure use with adjustments in lifestyle to substantially modify metabolic complications in OSA

    Survey of childhood empyema in Asia: Implications for detecting the unmeasured burden of culture-negative bacterial disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Parapneumonic empyema continues to be a disease of significant morbidity and mortality among children despite recent advances in medical management. To date, only a limited number of studies have assessed the burden of empyema in Asia.</p> <p>Methods</p> <p>We surveyed medical records of four representative large pediatric hospitals in China, Korea, Taiwan and Vietnam using <it>ICD</it>-10 diagnostic codes to identify children <16 years of age hospitalized with empyema or pleural effusion from 1995 to 2005. We also accessed microbiology records of cultured empyema and pleural effusion specimens to describe the trends in the epidemiology and microbiology of empyema.</p> <p>Results</p> <p>During the study period, we identified 1,379 children diagnosed with empyema or pleural effusion (China, n = 461; Korea, n = 134; Taiwan, n = 119; Vietnam, n = 665). Diagnoses of pleural effusion (n = 1,074) were 3.5 times more common than of empyema (n = 305), although the relative proportions of empyema and pleural effusion noted in hospital records varied widely between the four sites, most likely because of marked differences in coding practices. Although pleural effusions were reported more often than empyema, children with empyema were more likely to have a cultured pathogen. In addition, we found that median age and gender distribution of children with these conditions were similar across the four countries. Among 1,379 empyema and pleural effusion specimens, 401 (29%) were culture positive. <it>Staphylococcus aureus </it>(n = 126) was the most common organism isolated, followed by <it>Streptococcus pneumoniae </it>(n = 83), <it>Pseudomonas aeruginosa </it>(n = 37) and <it>Klebsiella </it>(n = 35) and <it>Acinetobacter </it>species (n = 34).</p> <p>Conclusion</p> <p>The age and gender distribution of empyema and pleural effusion in children in these countries are similar to the US and Western Europe. <it>S. pneumoniae </it>was the second leading bacterial cause of empyema and pleural effusion among Asian children. The high proportion of culture-negative specimens among patients with pleural effusion or empyema suggests that culture may not be a sufficiently sensitive diagnostic method to determine etiology in the majority of cases. Future prospective studies in different countries would benefit from standardized case definitions and coding practices for empyema. In addition, more sensitive diagnostic methods would improve detection of pathogens and could result in better prevention, treatment and outcomes of this severe disease.</p
    corecore