174 research outputs found

    Overview of ASDEX Upgrade results

    Get PDF
    Recent results from the ASDEX Upgrade experimental campaigns 2001 and 2002 are presented. An improved understanding of energy and particle transport emerges in terms of a 'critical gradient' model for the temperature gradients. Coupling this to particle diffusion explains most of the observed behaviour of the density profiles, in particular, the finding that strong central heating reduces the tendency for density profile peaking. Internal transport barriers (ITBs) with electron and ion temperatures in excess of 20 keV (but not simultaneously) have been achieved. By shaping the plasma, a regime with small type II edge localized modes (ELMs) has been established. Here, the maximum power deposited on the target plates was greatly reduced at constant average power. Also, an increase of the ELM frequency by injection of shallow pellets was demonstrated. ELM free operation is possible in the quiescent H-mode regime previously found in DIII-D which has also been established on ASDEX Upgrade. Regarding stability, a regime with benign neoclassical tearing modes (NTMs) was found. During electron cyclotron current drive (ECCD) stabilization of NTMs, βN could be increased well above the usual onset level without a reappearance of the NTM. Electron cyclotron resonance heating and ECCD have also been used to control the sawtooth repetition frequency at a moderate fraction of the total heating power. The inner wall of the ASDEX Upgrade vessel has increasingly been covered with tungsten without causing detrimental effects on the plasma performance. Regarding scenario integration, a scenario with a large fraction of noninductively driven current (≥50%), but without ITB has been established. It combines improved confinement (τE/τITER98 ≈ 1.2) and stability (βN ≤ 3.5) at high Greenwald fraction (ne/nGW ≈ 0.85) in steady state and with type II ELMy edge and would offer the possibility for long pulses with high fusion power at reduced current in ITER

    Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET

    Get PDF
    The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR

    Relationship of edge localized mode burst times with divertor flux loop signal phase in JET

    Get PDF
    A phase relationship is identified between sequential edge localized modes (ELMs) occurrence times in a set of H-mode tokamak plasmas to the voltage measured in full flux azimuthal loops in the divertor region. We focus on plasmas in the Joint European Torus where a steady H-mode is sustained over several seconds, during which ELMs are observed in the Be II emission at the divertor. The ELMs analysed arise from intrinsic ELMing, in that there is no deliberate intent to control the ELMing process by external means. We use ELM timings derived from the Be II signal to perform direct time domain analysis of the full flux loop VLD2 and VLD3 signals, which provide a high cadence global measurement proportional to the voltage induced by changes in poloidal magnetic flux. Specifically, we examine how the time interval between pairs of successive ELMs is linked to the time-evolving phase of the full flux loop signals. Each ELM produces a clear early pulse in the full flux loop signals, whose peak time is used to condition our analysis. The arrival time of the following ELM, relative to this pulse, is found to fall into one of two categories: (i) prompt ELMs, which are directly paced by the initial response seen in the flux loop signals; and (ii) all other ELMs, which occur after the initial response of the full flux loop signals has decayed in amplitude. The times at which ELMs in category (ii) occur, relative to the first ELM of the pair, are clustered at times when the instantaneous phase of the full flux loop signal is close to its value at the time of the first ELM

    Development of a fast valve for mitigating disruptions in tokamaks

    Get PDF
    In support of our disruption mitigation profram, a fast gas valve has been constructed and tested on TEXTOR at FZJ Juelich. Its main features have been shown to be: (1) rapid response time: 0.5 ms; (2) amount of injected gas: variable, 2-1000 mbarxl; (3) linear dependence of the number of injected particles on the gas pressure; (4) capability of working in a strong magnetic field; (5) sort of gas: any. The valve has the standard CF 35 flange, commonly used in vacuum engineering. All the components that have contact with vacuum were made of stainless steel, except for the closing aluminum piston. To prevent gas leaking directly from the bottles to the experimental vessel there are also two safety valves, closing the bottles before the shot. The required control equipment includes a high power supply and the combined controller for the safety valves and baratrons, both being able to work with TTL control signals. During tests and experiments on TEXTOR and ASDEX-Upgrade, the valve showed successful operation with three gas types: He, Ne, Ar. (C) 2002 American Institute of Physics

    Disruptions and their mitigation in TEXTOR

    Get PDF
    Disruptions remain a major concern for tokamak devices, particularly for large machines. The critical issues are the induced (halo) currents and the resulting forces, the excessive heating of exposed surfaces by the instantaneous power release, and the possible occurrence of highly energetic runaway electrons. The key topics of the investigations on TEXTOR in the recent years concerned (a) the power deposition pattern recorded by a fast infrared scanner, (b) the runaway generation measured by synchrotron radiation in the infrared spectral region, (c) method development for "healing" discharges that are going to disrupt, and (d) massive gas puffing for mitigating the adverse effects of disruptions

    Mitigation of disruptions in a tokamak by means of large gas injection

    No full text
    To study the basic physical processes of a disruption, a one-dimensional numerical model of particle and energy transport has been developed. Calculations for neon show that a fast penetration of the neutral gas can occur owing to the cooling of the plasma at the front of the neutral particle cloud. Assuming a large inward transport of the injected impurity of the order of 100 m"2/s, the radiated energy becomes equal to the thermal plasma energy prior to the disruption. After the thermal collapse, the plasma reaches an equilibrium temperature of several eV as a balance between ohmic heating, radiation and heat conduction losses. (orig.)SIGLEAvailable from TIB Hannover: RA 831(4122) / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekDEGerman
    corecore