232 research outputs found

    Drop impact on a flexible fiber

    Full text link
    When droplets impact fibrous media, the liquid can be captured by the fibers or contact then break away. Previous studies have shown that the efficiency of drop capture by a rigid fiber depends on the impact velocity and defined a threshold velocity below which the drop is captured. However, it is necessary to consider the coupling of elastic and capillary effects to achieve a greater understanding of the capture process for soft substrates. Here, we study experimentally the dynamics of a single drop impacting on a thin flexible fiber. Our results demonstrate that the threshold capture velocity depends on the flexibility of fibers in a non-monotonic way. We conclude that tuning the mechanical properties of fibers can optimize the efficiency of droplet capture.Comment: Soft Matter (2015

    Wetting of crossed fibers: multiple steady states and symmetry breaking

    Full text link
    We investigate the wetting properties of the simplest element of an array of random fibers: two rigid fibers crossing with an inclination angle and in contact with a droplet of a perfectly wetting liquid. We show experimentally that the liquid adopts different morphologies when the inclination angle is increased: a column shape, a mixed morphology state where a drop lies at the end of a column, or a drop centered at the node. An analytical model is provided that predicts the wetting length as well as the presence of a non-symmetric state in the mixed morphology regime. The model also highlights a symmetry breaking at the transition between the column state and the mixed morphology. The possibility to tune the morphology of the liquid could have important implications for drying processes

    Damping of liquid sloshing by foams: from everyday observations to liquid transport

    Full text link
    We perform experiments on the sloshing dynamics of liquids in a rectangular container submitted to an impulse. We show that when foam is placed on top of the liquid the oscillations of the free interface are significantly damped. The ability to reduce sloshing and associated splashing could find applications in numerous industrial processes involving liquid transport.Comment: Accepted for publication in Journal of Visualizatio

    Wetting morphologies on randomly oriented fibers

    Full text link
    We characterize the different morphologies adopted by a drop of liquid placed on two randomly oriented fibers, which is a first step toward understanding the wetting of fibrous networks. The present work reviews previous modeling for parallel and touching crossed fibers and extends it to an arbitrary orientation of the fibers characterized by the tilting angle and the minimum spacing distance. Depending on the volume of liquid, the spacing distance between fibers and the angle between the fibers, we highlight that the liquid can adopt three different equilibrium morphologies: (1) a column morphology in which the liquid spreads between the fibers, (2) a mixed morphology where a drop grows at one end of the column or (3) a single drop located at the node. We capture the different morphologies observed using an analytical model that predicts the equilibrium configuration of the liquid based on the geometry of the fibers and the volume of liquid

    Wetting morphologies on an array of fibers of different radii

    Get PDF
    We investigate the equilibrium morphology of a finite volume of liquid placed on two parallel rigid fibers of different radii. As observed for identical radii fibers, the liquid is either in a column morphology or adopts a drop shape depending on the inter-fiber distance. However the cross-sectional area and the critical inter-fiber distance at which the transition occurs are both modified by the polydispersity of the fibers. Using energy considerations, we analytically predict the critical inter-fiber distance corresponding to the transition between the column and the drop morphologies occurs. This distance depends both on the radii of the fibers and on the contact angle of the liquid. We perform experiments using a perfectly wetting liquid on two parallel nylon fibers: the results are in good agreement with our analytical model. The morphology of the capillary bridges between fibers of different radii is relevant to the modeling of large arrays of polydisperse fibers

    Failure of mean-field approach in out-of-equilibrium Anderson model

    Full text link
    To explore the limitations of the mean field approximation, frequently used in \textit{ab initio} molecular electronics calculations, we study an out-of-equilibrium Anderson impurity model in a scattering formalism. We find regions in the parameter space where both magnetic and non-magnetic solutions are stable. We also observe a hysteresis in the non-equilibrium magnetization and current as a function of the applied bias voltage. The mean field method also predicts incorrectly local moment formation for large biases and a spin polarized current, and unphysical kinks appear in various physical quantities. The mean field approximation thus fails in every region where it predicts local moment formation.Comment: 5 pages, 5 figure

    Dip-coating of suspensions

    Full text link
    Withdrawing a plate from a suspension leads to the entrainment of a coating layer of fluid and particles on the solid surface. In this article, we study the Landau-Levich problem in the case of a suspension of non-Brownian particles at moderate volume fraction 10%<ϕ<41%10\% < \phi < 41\%. We observe different regimes depending on the withdrawal velocity UU, the volume fraction of the suspension ϕ\phi, and the diameter of the particles 2 a2\,a. Our results exhibit three coating regimes. (i) At small enough capillary number CaCa, no particles are entrained, and only a liquid film coats the plate. (ii) At large capillary number, we observe that the thickness of the entrained film of suspension is captured by the Landau-Levich law using the effective viscosity of the suspension η(ϕ)\eta(\phi). (iii) At intermediate capillary numbers, the situation becomes more complicated with a heterogeneous coating on the substrate. We rationalize our experimental findings by providing the domain of existence of these three regimes as a function of the fluid and particles properties

    Corrugated interfaces in multiphase core-annular flow

    Get PDF
    Microfluidic devices can be used to produce highly controlled and monodisperse double or multiple emulsions. The presence of inner drops inside a jet of the middle phase introduces deformations in the jet, which leads to breakup into monodisperse double emulsions. However, the ability to generate double emulsions can be compromised when the interfacial tension between the middle and outer phases is low, leading to flow with high capillary and Weber numbers. In this case, the interface between the fluids is initially deformed by the inner drops but the jet does not break into drops. Instead, the jet becomes highly corrugated, which prevents formation of controlled double emulsions. We show using numerical calculations that the corrugations are caused by the inner drops perturbing the interface and the perturbations are then advected by the flow into complex shapes

    Beam tuning and stabilization using beam phase measurement at GANIL

    Get PDF
    International audienc

    Fluctuation-induced dynamics of multiphase liquid jets with ultra-low interfacial tension

    Get PDF
    postprin
    • …
    corecore