78 research outputs found

    Strategies to avoid salinity and hydric stress of pepper grafted plants

    Get PDF
    Sweet pepper is one of the most important vegetable crops in arid and semiarid regions. Grafting has been proposed as an interesting strategy that improves the responses of crops under the salinity and hydric deficits occurring in these areas. In a previous work, we selected Capsicum spp accessions with different degrees of salinity and hydric stress tolerance to be used as rootstocks (the highest to lowest): Capsicum chinense Jacq. ‘ECU-973’ (code 12), Capsicum baccatum L. var. pendulum ‘BOL-58’ (code 14) and Capsicum annuum L var. ‘Serrano’ (code 5). The behavior of commercial cultivar seedlings grafted onto these rootstocks was compared during 14 days under water stress (5% polyethylene glycol) and salinity (40 mM NaCl) in hydroponic culture. Different physiological parameters were measured to test the hypothesis that tolerance might be related to the role of rootstock in altering the stress perception by the scion and to identify differences in pepper-grafted plants adaptation mechanisms in response to salt and osmotic stresses. At a similar osmotic pressure of the solution, grafted plants onto the 12 and 14 rootstocks activated tolerance mechanisms based on ion specific responses under salinity, whereas osmotic adjustment based on proline accumulation was performed under water stress. The maintenance of the scion's homeostasis under salinity was achieved through the restriction of Cl- transport to leaves and to diminished Na+ loading in roots and leaves, thus favouring K+ uptake. Under both stresses, a minor negative impact on photosynthesis, nitrate reductase activity and lipid peroxidation in scion leaves grafted onto 12 and 14 rootstocks was observed. In conclusion, the results of these works reinforce that the use of tolerant pepper rootstocks is a promising strategy to provide salinity and water stress tolerance and can consequently improve crop yield

    Seed treatments for improved germination of caper (Capparis spinosa)

    Full text link
    [EN] This study analyses the effects of seven treatments for removing hardseededness and four for breaking physiological dormancy in caper seeds. Seeds were germinated in a growth chamber and the maximum germination percentage, the time to reach 50% of final germination and the mean relative cumulative rate were calculated. The logistic function was suitable for analysing caper seed germination. Acid scarification followed by the addition of a GA(3) solution to the germination substrate was the best, efficient and cost effective method for ensuring satisfactory seed germination. Acid scarification can be substituted by mechanical scarification with ultrasound. hot water scarification or soaking, but these procedures require longer germination periods to reach satisfactory germination levels. The soaking method proved useful enough to remove hardseededness and it is also the most simple among the assayed treatments.Pascual España, B.; San Bautista Primo, A.; Imbernon, A.; López Galarza, SV.; Alagarda Pardo, J.; Maroto Borrego, JV. (2004). Seed treatments for improved germination of caper (Capparis spinosa). Seed Science and Technology. 32(2):637-642. doi:10.15258/sst.2004.32.2.33S63764232

    Pepper Rootstock and Scion Physiological Responses Under Drought Stress

    Full text link
    [EN] In vegetables, tolerance to drought can be improved by grafting commercial varieties onto drought tolerant rootstocks. Grafting has emerged as a tool that copes with drought stress. In previous results, the A25 pepper rootstock accession showed good tolerance to drought in fruit production terms compared with non-grafted plants and other rootstocks. The aim of this work was to study if short-term exposure to drought in grafted plants using A25 as a rootstock would show tolerance to drought now. To fulfill this objective, some physiological processes involved in roots (rootstock) and leaves (scion) of grafted pepper plants were analyzed. Pepper plants not grafted (A), self-grafted (A/A), and grafted onto a tolerant pepper rootstock A25 (A/A25) were grown under severe water stress induced by PEG addition (-0.55 MPa) or under control conditions for 7 days in hydroponic pure solution. According to our results, water stress severity was alleviated by using the A25 rootstock in grafted plants (A/A25), which indicated that mechanisms stimulated by roots are essential to withstand stress. A/A25 had a bigger root biomass compared with plants A and A/A that resulted in better water absorption, water retention capacity and a sustained CO2 assimilation rate. Consequently, plants A/A25 had a better carbon balance, supported by greater nitrate reductase activity located mainly in leaves. In the non-grafted and self-grafted plants, the photosynthesis rate lowered due to stomatal closure, which limited transpiration. Consequently, part of NO3- uptake was reduced in roots. This condition limited water uptake and CO2 fixation in plants A and A/A under drought stress, and accelerated oxidative damage by producing reactive oxygen species (ROS) and H2O2, which were highest in their leaves, indicating great sensitivity to drought stress and induced membrane lipid peroxidation. However, drought deleterious effects were slightly marked in plants A compared to A/A. To conclude, the A25 rootstock protects the scion against oxidative stress, which is provoked by drought, and shows better C and N balances that enabled the biomass to be maintained under water stress for short-term exposure, with higher yields in the field.This work has funded by INIA (Spain) through Project RTA2017-00030-C02-00 and the European Regional Development Fund (ERDF). LL-S is a beneficiary of a doctoral fellowship (FPI-INIA).Lopez-Serrano, L.; Canet-Sanchis, G.; Selak, G.; Penella-Casañ, C.; San Bautista Primo, A.; López Galarza, SV.; Calatayud, A. (2019). Pepper Rootstock and Scion Physiological Responses Under Drought Stress. Frontiers in Plant Science. 10:1-13. https://doi.org/10.3389/fpls.2019.00038S11310. O. A., . N. O., & . Y. G. (2007). Effect of Grafting on Watermelon Plant Growth, Yield and Quality. Journal of Agronomy, 6(2), 362-365. doi:10.3923/ja.2007.362.365Aloni, B., Karni, L., Deventurero, G., Levin, Z., Cohen, R., Katzir, N., … Kapulnik, Y. (2008). POSSIBLE MECHANISMS FOR GRAFT INCOMPATIBILITY BETWEEN MELON SCIONS AND PUMPKIN ROOTSTOCKS. Acta Horticulturae, (782), 313-324. doi:10.17660/actahortic.2008.782.39Anjum, S. A., Farooq, M., Xie, X., Liu, X., & Ijaz, M. F. (2012). Antioxidant defense system and proline accumulation enables hot pepper to perform better under drought. Scientia Horticulturae, 140, 66-73. doi:10.1016/j.scienta.2012.03.028Asada, K. (1999). THE WATER-WATER CYCLE IN CHLOROPLASTS: Scavenging of Active Oxygens and Dissipation of Excess Photons. Annual Review of Plant Physiology and Plant Molecular Biology, 50(1), 601-639. doi:10.1146/annurev.arplant.50.1.601Ashraf, M., & Foolad, M. R. (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 59(2), 206-216. doi:10.1016/j.envexpbot.2005.12.006Borsani, O., Valpuesta, V., & Botella, M. A. (2003). Plant Cell, Tissue and Organ Culture, 73(2), 101-115. doi:10.1023/a:1022849200433Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28(1), 25-30. doi:10.1016/s0023-6438(95)80008-5Cantero-Navarro, E., Romero-Aranda, R., Fernández-Muñoz, R., Martínez-Andújar, C., Pérez-Alfocea, F., & Albacete, A. (2016). Improving agronomic water use efficiency in tomato by rootstock-mediated hormonal regulation of leaf biomass. Plant Science, 251, 90-100. doi:10.1016/j.plantsci.2016.03.001CHOUKA, A., & JEBARI, H. (1999). EFFECT OF GRAFTING ON WATERMELON VEGETATIVE AND ROOT DEVELOPMENT, PRODUCTION AND FRUIT QUALITY. Acta Horticulturae, (492), 85-94. doi:10.17660/actahortic.1999.492.10Colla, G., Rouphael, Y., Leonardi, C., & Bie, Z. (2010). Role of grafting in vegetable crops grown under saline conditions. Scientia Horticulturae, 127(2), 147-155. doi:10.1016/j.scienta.2010.08.004Correia, M. J., Fonseca, F., Azedo-Silva, J., Dias, C., David, M. M., Barrote, I., … Osorio, J. (2005). Effects of water deficit on the activity of nitrate reductase and content of sugars, nitrate and free amino acids in the leaves and roots of sunflower and white lupin plants growing under two nutrient supply regimes. Physiologia Plantarum, 124(1), 61-70. doi:10.1111/j.1399-3054.2005.00486.xCuartero, J., Bolarín, M. C., Asíns, M. J., & Moreno, V. (2006). Increasing salt tolerance in the tomato. Journal of Experimental Botany, 57(5), 1045-1058. doi:10.1093/jxb/erj102Delfine, S., Tognetti, R., Loreto, F., & Alvino, A. (2002). Physiological and growth responses to water stress in Field-grown bell pepper (Capsicum annuumL.). The Journal of Horticultural Science and Biotechnology, 77(6), 697-704. doi:10.1080/14620316.2002.11511559DHINDSA, R. S., PLUMB-DHINDSA, P., & THORPE, T. A. (1981). Leaf Senescence: Correlated with Increased Levels of Membrane Permeability and Lipid Peroxidation, and Decreased Levels of Superoxide Dismutase and Catalase. Journal of Experimental Botany, 32(1), 93-101. doi:10.1093/jxb/32.1.93Estan, M. T. (2005). Grafting raises the salt tolerance of tomato through limiting the transport of sodium and chloride to the shoot. Journal of Experimental Botany, 56(412), 703-712. doi:10.1093/jxb/eri027Fahad, S., Bajwa, A. A., Nazir, U., Anjum, S. A., Farooq, A., Zohaib, A., … Huang, J. (2017). Crop Production under Drought and Heat Stress: Plant Responses and Management Options. Frontiers in Plant Science, 8. doi:10.3389/fpls.2017.01147Feller, U., & Vaseva, I. I. (2014). Extreme climatic events: impacts of drought and high temperature on physiological processes in agronomically important plants. Frontiers in Environmental Science, 2. doi:10.3389/fenvs.2014.00039Ferrario, S., Valadier, M.-H., Morot-Gaudry, J.-F., & Foyer, C. (1995). Effects of constitutive expression of nitrate reductase in transgenic Nicotiana plumbaginifolia L. in response to varying nitrogen supply. Planta, 196(2). doi:10.1007/bf00201387Finckh, M. R. (s. f.). Integration of breeding and technology into diversification strategies for disease control in modern agriculture. Sustainable disease management in a European context, 399-409. doi:10.1007/978-1-4020-8780-6_19Flexas, J., Barón, M., Bota, J., Ducruet, J.-M., Gallé, A., Galmés, J., … Medrano, H. (2009). Photosynthesis limitations during water stress acclimation and recovery in the drought-adapted Vitis hybrid Richter-110 (V. berlandieri×V. rupestris). Journal of Experimental Botany, 60(8), 2361-2377. doi:10.1093/jxb/erp069Flexas, J., Bota, J., Loreto, F., Cornic, G., & Sharkey, T. D. (2004). Diffusive and Metabolic Limitations to Photosynthesis under Drought and Salinity in C 3 Plants. Plant Biology, 6(3), 269-279. doi:10.1055/s-2004-820867Garcı́a-Mata, C., & Lamattina, L. (2001). Nitric Oxide Induces Stomatal Closure and Enhances the Adaptive Plant Responses against Drought Stress. Plant Physiology, 126(3), 1196-1204. doi:10.1104/pp.126.3.1196Vahdati, K., & Lotfi, N. (2013). Abiotic Stress Tolerance in Plants with Emphasizing on Drought and Salinity Stresses in Walnut. Abiotic Stress - Plant Responses and Applications in Agriculture. doi:10.5772/56078Gilliham, M., Able, J. A., & Roy, S. J. (2017). Translating knowledge about abiotic stress tolerance to breeding programmes. The Plant Journal, 90(5), 898-917. doi:10.1111/tpj.13456Hageman, R. H., & Hucklesby, D. P. (1971). [45] Nitrate reductase from higher plants. Photosynthesis and Nitrogen Part A, 491-503. doi:10.1016/s0076-6879(71)23121-9Haroldsen, V. M., Szczerba, M. W., Aktas, H., Lopez-Baltazar, J., Odias, M. J., Chi-Ham, C. L., … Powell, A. L. T. (2012). Mobility of Transgenic Nucleic Acids and Proteins within Grafted Rootstocks for Agricultural Improvement. Frontiers in Plant Science, 3. doi:10.3389/fpls.2012.00039He, Y., Zhu, Z., Yang, J., Ni, X., & Zhu, B. (2009). Grafting increases the salt tolerance of tomato by improvement of photosynthesis and enhancement of antioxidant enzymes activity. Environmental and Experimental Botany, 66(2), 270-278. doi:10.1016/j.envexpbot.2009.02.007Heath, R. L., & Packer, L. (1968). Photoperoxidation in isolated chloroplasts. Archives of Biochemistry and Biophysics, 125(3), 850-857. doi:10.1016/0003-9861(68)90523-7Hsiao, T. C., & Xu, L. (2000). Sensitivity of growth of roots versus leaves to water stress: biophysical analysis and relation to water transport. Journal of Experimental Botany, 51(350), 1595-1616. doi:10.1093/jexbot/51.350.1595Jaworski, E. G. (1971). Nitrate reductase assay in intact plant tissues. Biochemical and Biophysical Research Communications, 43(6), 1274-1279. doi:10.1016/s0006-291x(71)80010-4Kaiser, W. M., & Huber, S. C. (2001). Post‐translational regulation of nitrate reductase: mechanism, physiological relevance and environmental triggers. Journal of Experimental Botany, 52(363), 1981-1989. doi:10.1093/jexbot/52.363.1981Keleş, Y., & Öncel, I. (2002). Response of antioxidative defence system to temperature and water stress combinations in wheat seedlings. Plant Science, 163(4), 783-790. doi:10.1016/s0168-9452(02)00213-3Özkum, D., & Tipirdamaz, R. (2010). Effects of l-Proline and Cold Treatment on Pepper (Capsicum annuum L.) Anther Culture. Survival and Sustainability, 137-143. doi:10.1007/978-3-540-95991-5_14Koevoets, I. T., Venema, J. H., Elzenga, J. T. M., & Testerink, C. (2016). Roots Withstanding their Environment: Exploiting Root System Architecture Responses to Abiotic Stress to Improve Crop Tolerance. Frontiers in Plant Science, 07. doi:10.3389/fpls.2016.01335Kumar, P., Rouphael, Y., Cardarelli, M., & Colla, G. (2017). Vegetable Grafting as a Tool to Improve Drought Resistance and Water Use Efficiency. Frontiers in Plant Science, 8. doi:10.3389/fpls.2017.01130Kyriacou, M. C., Rouphael, Y., Colla, G., Zrenner, R., & Schwarz, D. (2017). Vegetable Grafting: The Implications of a Growing Agronomic Imperative for Vegetable Fruit Quality and Nutritive Value. Frontiers in Plant Science, 8. doi:10.3389/fpls.2017.00741Lamaoui, M., Jemo, M., Datla, R., & Bekkaoui, F. (2018). Heat and Drought Stresses in Crops and Approaches for Their Mitigation. Frontiers in Chemistry, 6. doi:10.3389/fchem.2018.00026Lammerts van Bueren, E. T., Jones, S. S., Tamm, L., Murphy, K. M., Myers, J. R., Leifert, C., & Messmer, M. M. (2011). The need to breed crop varieties suitable for organic farming, using wheat, tomato and broccoli as examples: A review. NJAS - Wageningen Journal of Life Sciences, 58(3-4), 193-205. doi:10.1016/j.njas.2010.04.001Lee, J.-M., Kubota, C., Tsao, S. J., Bie, Z., Echevarria, P. H., Morra, L., & Oda, M. (2010). Current status of vegetable grafting: Diffusion, grafting techniques, automation. Scientia Horticulturae, 127(2), 93-105. doi:10.1016/j.scienta.2010.08.003Lexa, M., & Cheeseman, J. M. (1997). Growth and nitrogen relations in reciprocal grafts of wild-type and nitrate reductase-deficient mutants of pea (Pisum sativumL. var. Juneau). Journal of Experimental Botany, 48(6), 1241-1250. doi:10.1093/jxb/48.6.1241LI, H., LIU, S., YI, C., WANG, F., ZHOU, J., XIA, X., … YU, J. (2014). Hydrogen peroxide mediates abscisic acid‐induced HSP 70 accumulation and heat tolerance in grafted cucumber plants. Plant, Cell & Environment, 37(12), 2768-2780. doi:10.1111/pce.12360Lillo, C., Meyer, C., Lea, U. S., Provan, F., & Oltedal, S. (2004). Mechanism and importance of post-translational regulation of nitrate reductase. Journal of Experimental Botany, 55(401), 1275-1282. doi:10.1093/jxb/erh132Liu, S., Li, H., Lv, X., Ahammed, G. J., Xia, X., Zhou, J., … Zhou, Y. (2016). Grafting cucumber onto luffa improves drought tolerance by increasing ABA biosynthesis and sensitivity. Scientific Reports, 6(1). doi:10.1038/srep20212Loggini, B., Scartazza, A., Brugnoli, E., & Navari-Izzo, F. (1999). Antioxidative Defense System, Pigment Composition, and Photosynthetic Efficiency in Two Wheat Cultivars Subjected to Drought. Plant Physiology, 119(3), 1091-1100. doi:10.1104/pp.119.3.1091Martı́nez-Ballesta, M. C., Martı́nez, V., & Carvajal, M. (2004). Osmotic adjustment, water relations and gas exchange in pepper plants grown under NaCl or KCl. Environmental and Experimental Botany, 52(2), 161-174. doi:10.1016/j.envexpbot.2004.01.012Martinez-Rodriguez, M. M., Estañ, M. T., Moyano, E., Garcia-Abellan, J. O., Flores, F. B., Campos, J. F., … Bolarín, M. C. (2008). The effectiveness of grafting to improve salt tolerance in tomato when an ‘excluder’ genotype is used as scion. Environmental and Experimental Botany, 63(1-3), 392-401. doi:10.1016/j.envexpbot.2007.12.007Munns, R., Husain, S., Rivelli, A. R., James, R. A., Condon, A. G. T., Lindsay, M. P., … Hare, R. A. (2002). Avenues for increasing salt tolerance of crops, and the role of physiologically based selection traits. Progress in Plant Nutrition: Plenary Lectures of the XIV International Plant Nutrition Colloquium, 93-105. doi:10.1007/978-94-017-2789-1_7Navarro, J. M., Garrido, C., Martínez, V., & Carvajal, M. (2003). Water relations and xylem transport of nutrients in pepper plants grown under two different salts stress regimes. Plant Growth Regulation, 41(3), 237-245. doi:10.1023/b:grow.0000007515.72795.c5Orsini, F., Sanoubar, R., Oztekin, G. B., Kappel, N., Tepecik, M., Quacquarelli, C., … Gianquinto, G. (2013). Improved stomatal regulation and ion partitioning boosts salt tolerance in grafted melon. Functional Plant Biology, 40(6), 628. doi:10.1071/fp12350Penella, C., Landi, M., Guidi, L., Nebauer, S. G., Pellegrini, E., Bautista, A. S., … Calatayud, A. (2016). Salt-tolerant rootstock increases yield of pepper under salinity through maintenance of photosynthetic performance and sinks strength. Journal of Plant Physiology, 193, 1-11. doi:10.1016/j.jplph.2016.02.007Penella, C., Nebauer, S. G., López-Galarza, S., Quiñones, A., San Bautista, A., & Calatayud, Á. (2017). Grafting pepper onto tolerant rootstocks: An environmental-friendly technique overcome water and salt stress. Scientia Horticulturae, 226, 33-41. doi:10.1016/j.scienta.2017.08.020Penella, C., Nebauer, S. G., López-Galarza, S., SanBautista, A., Rodríguez-Burruezo, A., & Calatayud, A. (2014). Evaluation of some pepper genotypes as rootstocks in water stress conditions. Horticultural Science, 41(No. 4), 192-200. doi:10.17221/163/2013-hortsciPenella, C., Nebauer, S. G., Bautista, A. S., López-Galarza, S., & Calatayud, Á. (2014). Rootstock alleviates PEG-induced water stress in grafted pepper seedlings: Physiological responses. Journal of Plant Physiology, 171(10), 842-851. doi:10.1016/j.jplph.2014.01.013Reddy, A. R., Chaitanya, K. V., & Vivekanandan, M. (2004). Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. Journal of Plant Physiology, 161(11), 1189-1202. doi:10.1016/j.jplph.2004.01.013Rivero, R. M., Ruiz, J. M., & Romero, L. (2003). Can grafting in tomato plants strengthen resistance to thermal stress? Journal of the Science of Food and Agriculture, 83(13), 1315-1319. doi:10.1002/jsfa.1541Rivero, R. M., Ruiz, J. M., Sánchez, E., & Romero, L. (2002). Does grafting provide tomato plants an advantage against H2 O2 production under conditions of thermal shock? Physiologia Plantarum, 117(1), 44-50. doi:10.1034/j.1399-3054.2003.1170105.xColla, G., Rouphael, Y., Cardarelli, M., Massa, D., Salerno, A., & Rea, E. (2006). Yield, fruit quality and mineral composition of grafted melon plants grown under saline conditions. The Journal of Horticultural Science and Biotechnology, 81(1), 146-152. doi:10.1080/14620316.2006.11512041Sade, N., Gebremedhin, A., & Moshelion, M. (2012). Risk-taking plants. Plant Signaling & Behavior, 7(7), 767-770. doi:10.4161/psb.20505Sairam, R. K., & Srivastava, G. C. (2001). Water Stress Tolerance of Wheat (Triticum aestivum L.): Variations in Hydrogen Peroxide Accumulation and Antioxidant Activity in Tolerant and Susceptible Genotypes. Journal of Agronomy and Crop Science, 186(1), 63-70. doi:10.1046/j.1439-037x.2001.00461.xSánchez-Rodríguez, E., Leyva, R., Constán-Aguilar, C., Romero, L., & Ruiz, J. M. (2014). How does grafting affect the ionome of cherry tomato plants under water stress? Soil Science and Plant Nutrition, 60(2), 145-155. doi:10.1080/00380768.2013.870873Sánchez-Rodríguez, E., Romero, L., & Ruiz, J. M. (2013). Role of Grafting in Resistance to Water Stress in Tomato Plants: Ammonia Production and Assimilation. Journal of Plant Growth Regulation, 32(4), 831-842. doi:10.1007/s00344-013-9348-2Sánchez-Rodríguez, E., Rubio-Wilhelmi, M. del M., Blasco, B., Leyva, R., Romero, L., & Ruiz, J. M. (2012). Antioxidant response resides in the shoot in reciprocal grafts of drought-tolerant and drought-sensitive cultivars in tomato under water stress. Plant Science, 188-189, 89-96. doi:10.1016/j.plantsci.2011.12.019Savvas, D., Colla, G., Rouphael, Y., & Schwarz, D. (2010). Amelioration of heavy metal and nutrient stress in fruit vegetables by grafting. Scientia Horticulturae, 127(2), 156-161. doi:10.1016/j.scienta.2010.09.011Savvas, D., Savva, A., Ntatsi, G., Ropokis, A., Karapanos, I., Krumbein, A., & Olympios, C. (2010). Effects of three commercial rootstocks on mineral nutrition, fruit yield, and quality of salinized tomato. Journal of Plant Nutrition and Soil Science, 174(1), 154-162. doi:10.1002/jpln.201000099Scheurwater, I. (2002). The contribution of roots and shoots to whole plant nitrate reduction in fast- and slow-growing grass species. Journal of Experimental Botany, 53(374), 1635-1642. doi:10.1093/jxb/erf008Schwarz, D., Rouphael, Y., Colla, G., & Venema, J. H. (2010). Grafting as a tool to improve tolerance of vegetables to abiotic stresses: Thermal stress, water stress and organic pollutants. Scientia Horticulturae, 127(2), 162-171. doi:10.1016/j.scienta.2010.09.016Sharp, R. E., Wu, Y., Voetberg, G. S., Saab, I. N., & LeNoble, M. E. (1994). Confirmation that abscisic acid accumulation is required for maize primary root elongation at low water potentials. Journal of Experimental Botany, 45(Special_Issue), 1743-1751. doi:10.1093/jxb/45.special_issue.1743Silva, C., Martinez, V., & Carvajal, M. (2008). Osmotic versus toxic effects of NaCl on pepper plants. Biologia plantarum, 52(1), 72-79. doi:10.1007/s10535-008-0010-yTardieu, F. (1998). Variability among species of stomatal control under fluctuating soil water status and evaporative demand: modelling isohydric and anisohydric behaviours. Journal of Experimental Botany, 49(90001), 419-432. doi:10.1093/jexbot/49.suppl_1.419Urban, L., Aarrouf, J., & Bidel, L. P. R. (2017). Assessing the Effects of Water Deficit on Photosynthesis Using Parameters Derived from Measurements of Leaf Gas Exchange and of Chlorophyll a Fluorescence. Frontiers in Plant Science, 8. doi:10.3389/fpls.2017.02068Velikova, V., Yordanov, I., & Edreva, A. (2000). Oxidative stress and some antioxidant systems in acid rain-treated bean plants. Plant Science, 151(1), 59-66. doi:10.1016/s0168-9452(99)00197-1Westgate, M. E., & Boyer, J. S. (1985). Osmotic adjustment and the inhibition of leaf, root, stem and silk growth at low water potentials in maize. Planta, 164(4), 540-549. doi:10.1007/bf00395973Yao, X., Yang, R., Zhao, F., Wang, S., Li, C., & Zhao, W. (2016). An analysis of physiological index of differences in drought tolerance of tomato rootstock seedlings. Journal of Plant Biology, 59(4), 311-321. doi:10.1007/s12374-016-0071-yYousfi, S., Serret, M. D., Márquez, A. J., Voltas, J., & Araus, J. L. (2012). Combined use of δ13C, δ18O and δ15N tracks nitrogen metabolism and genotypic adaptation of durum wheat to salinity and water deficit. New Phytologist, 194(1), 230-244. doi:10.1111/j.1469-8137.2011.04036.

    Influence of anion proportions in the nutrient solution on tipburn incidente in strawberry plants in soilless cultivation

    Full text link
    [EN] Tipburn incidence was evaluated in ‘Camarosa’ and ‘Candonga’ strawberry plants grown in perlite by varying the anion proportions in the nutrient solution during 2005-2006 under greenhouse. Six nutrient solutions with different proportions of NO3-, PO4H2- and SO42- were studied, maintaining constant both cation proportions and the total ionic concentration (30.2 meq L-1). Concentrations of these anions varied from 9.0 to 12.8, 0.9 to 4.7, and 0.75 to 2.65 mM L-1, respectively. Interactions between cultivars and solutions were not significant for any of the parameters studied. The anion proportions had no influence on yield parameters. Both the percentage of leaves with tipburn and tipburn severity per leaf were the highest with intermediate levels of sulphates and phosphates and low levels of nitrates. ‘Candonga’ not only produced the highest yield and fruit weight, but also the lowest tipburn incidence.The authors acknowledge financial support by the "Ministerio de Educación y Tecnología"-FEDER, through the research project AGL2004-04365/AGR as well as the linguistic assistance of Debra WestallSan Bautista Primo, A.; López Galarza, SV.; Martínez, A.; Maroto Borrego, JV.; Pascual España, B. (2009). Influence of anion proportions in the nutrient solution on tipburn incidente in strawberry plants in soilless cultivation. Acta Horticulturae. 842(2):999-1008. https://doi.org/10.17660/ActaHortic.2009.842.222S9991008842

    Growth and nutrient absorption of Cape Gooseberry (Physalis Peruviana L.) in soilless culture

    Full text link
    "This is an Author's Accepted Manuscript of an article published in [include the complete citation information for the final version of the article as published in the Journal of Plant Nutrition 2015 March, available online at: http://www.tandfonline.com/10.1080/01904167.2014.934474."Cape gooseberry (Physalis peruviana L.) is a solanaceous plant. The growth and time-course of nutrient accumulation of the plant and its partitioning between roots, stems, leaves, and fruits were examined. The study was conducted analyzing two nutrient solutions in soilless culture under greenhouse conditions during two consecutive seasons. The macronutrient contents were analyzed. On average, the yield was 8.9 t.ha(-1). Growth of the plant until 90 d after transplanting obeys an exponential function of time and the relative growth rate for this period was determined. Nitrogen (N) was the element that showed the highest concentration, corresponding to leaves (4.67%), followed by potassium (K) in stems (4.46%). The highest accumulations of N, phosphorous (P), calcium (Ca), and magnesium (Mg) were found in leaves and of K in the stems. Potassium showed the highest nutrient accumulation (29 g.plant(-1)) and the highest specific uptake rate.Torres Rubio, JF.; Pascual Seva, N.; San Bautista Primo, A.; Pascual España, B.; López Galarza, SV.; Alagarda Pardo, J.; Maroto Borrego, JV. (2015). Growth and nutrient absorption of Cape Gooseberry (Physalis Peruviana L.) in soilless culture. Journal of Plant Nutrition. 38(4):485-496. doi:10.1080/01904167.2014.934474S485496384Bellaloui, N., & Brown, P. H. (1998). Plant and Soil, 198(2), 153-158. doi:10.1023/a:1004343031242Bennett, J. P., Oshima, R. J., & Lippert, L. F. (1979). Effects of ozone on injury and dry matter partitioning in pepper plants. Environmental and Experimental Botany, 19(1), 33-39. doi:10.1016/0098-8472(79)90022-4CAUSTON, D. R. (1991). Plant Growth Analysis: The Variability of Relative Growth Rate Within a Sample. Annals of Botany, 67(2), 137-144. doi:10.1093/oxfordjournals.aob.a088112Convenio MAG-IICA (Ministerio de Agricultura y Ganadería. Institución Interamericana de Cooperación para la Agricultura). 2001. The cape gooseberry (Physalis peruvianaL.Physalis edulis). Subprograma de Cooperación Técnica, Ecuador. Available at: http://www.sica.gov.ec/agronegocios/Biblioteca/Convenio%20MAG%20IICA/productos/uvilla_mag.pdf (Accessed July 2007, in Spanish).El-Tohamy, W. A., El-Abagy, H. M., Abou-Hussein, S. D., & Gruda, N. (2009). Response of Cape gooseberry (Physalis peruviana L.) to nitrogen application under sandy soil conditions. Gesunde Pflanzen, 61(3-4), 123-127. doi:10.1007/s10343-009-0211-0Fresquet, J., Pascual, B., López-Galarza, S., Bautista, S., Baixauli, C., Gisbert, J. M., & Maroto, J. V. (2001). Nutrient uptake of pepino plants in soilless cultivation. The Journal of Horticultural Science and Biotechnology, 76(3), 338-343. doi:10.1080/14620316.2001.11511373Heuvelink, E., Bakker, M. J., Elings, A., Kaarsemaker, R. C., & Marcelis, L. F. M. (2005). EFFECT OF LEAF AREA ON TOMATO YIELD. Acta Horticulturae, (691), 43-50. doi:10.17660/actahortic.2005.691.2Leskovar, D. I., & Cantliffe, D. J. (1993). Comparison of Plant Establishment Method, Transplant, or Direct Seeding on Growth and Yield of Bell Pepper. Journal of the American Society for Horticultural Science, 118(1), 17-22. doi:10.21273/jashs.118.1.17Marcelis, L. F. M. (1993). Fruit growth and biomass allocation to the fruits in cucumber. 1. Effect of fruit load and temperature. Scientia Horticulturae, 54(2), 107-121. doi:10.1016/0304-4238(93)90059-yPuente, L. A., Pinto-Muñoz, C. A., Castro, E. S., & Cortés, M. (2011). Physalis peruviana Linnaeus, the multiple properties of a highly functional fruit: A review. Food Research International, 44(7), 1733-1740. doi:10.1016/j.foodres.2010.09.034Radford, P. J. (1967). Growth Analysis Formulae - Their Use and Abuse1. Crop Science, 7(3), 171. doi:10.2135/cropsci1967.0011183x000700030001xRamadan, M. F., & Moersel, J. T. (2007). Impact of enzymatic treatment on chemical composition, physicochemical properties and radical scavenging activity of goldenberry (Physalis peruviana L.) juice. Journal of the Science of Food and Agriculture, 87(3), 452-460. doi:10.1002/jsfa.2728Ramadan, M. F., & Moersel, J.-T. (2009). Oil extractability from enzymatically treated goldenberry (Physalis peruvianaL.) pomace: range of operational variables. International Journal of Food Science & Technology, 44(3), 435-444. doi:10.1111/j.1365-2621.2006.01511.xSalazar, M. R., Jones, J. W., Chaves, B., & Cooman, A. (2008). A model for the potential production and dry matter distribution of Cape gooseberry (Physalis peruviana L.). Scientia Horticulturae, 115(2), 142-148. doi:10.1016/j.scienta.2007.08.015Scholberg, J., McNeal, B. L., Jones, J. W., Boote, K. J., Stanley, C. D., & Obreza, T. A. (2000). Growth and Canopy Characteristics of Field-Grown Tomato. Agronomy Journal, 92(1), 152. doi:10.2134/agronj2000.921152xTrinchero, G. D., Sozzi, G. O., Cerri, A. M., Vilella, F., & Fraschina, A. A. (1999). Ripening-related changes in ethylene production, respiration rate and cell-wall enzyme activity in goldenberry (Physalis peruviana L.), a solanaceous species. Postharvest Biology and Technology, 16(2), 139-145. doi:10.1016/s0925-5214(99)00011-3Turner, A. (1994). Dry Matter Assimilation and Partitioning in Pepper Cultivars Differing in Susceptibility to Stress-induced Bud and Flower Abscission. Annals of Botany, 73(6), 617-622. doi:10.1006/anbo.1994.1077WILLIAMS, R. F. (1946). The Physiology of Plant Growth with Special Reference to the Concept of Net Assimilation Rate. Annals of Botany, 10(1), 41-72. doi:10.1093/oxfordjournals.aob.a083119Zapata, J.L., A. Saldarriaga, M. Londoño, and C. Díaz. 2002. Cape gooseberry Management in Colombia. Antioquia, Colombia: Rionegro, Programa Nacional de Transferencia de Tecnología Agropecuaria - Corpoica Regional Cuatro (in Spanish).Zerihun, A. (2000). Compensatory Roles of Nitrogen Uptake and Photosynthetic N-use Efficiency in Determining Plant Growth Response to Elevated CO2: Evaluation Using a Functional Balance Model. Annals of Botany, 86(4), 723-730. doi:10.1006/anbo.2000.123

    Hexanucleotide Repeat Expansions in c9FTD/ALS and SCA36 Confer Selective Patterns of Neurodegeneration In Vivo

    Get PDF
    A G4C2 hexanucleotide repeat expansion in an intron of C9orf72 is the most common cause of frontal temporal dementia and amyotrophic lateral sclerosis (c9FTD/ALS). A remarkably similar intronic TG3C2 repeat expansion is associated with spinocerebellar ataxia 36 (SCA36). Both expansions are widely expressed, form RNA foci, and can undergo repeat-associated non-ATG (RAN) translation to form similar dipeptide repeat proteins (DPRs). Yet, these diseases result in the degeneration of distinct subsets of neurons. We show that the expression of these repeat expansions in mice is sufficient to recapitulate the unique features of each disease, including this selective neuronal vulnerability. Furthermore, only the G4C2 repeat induces the formation of aberrant stress granules and pTDP-43 inclusions. Overall, our results demonstrate that the pathomechanisms responsible for each disease are intrinsic to the individual repeat sequence, highlighting the importance of sequence-specific RNA-mediated toxicity in each disorder

    Immunosuppression during Acute Infection with Foot-and-Mouth Disease Virus in Swine Is Mediated by IL-10

    Get PDF
    Foot-and-mouth disease virus (FMDV) is one of the most contagious animal viruses, causing a devastating disease in cloven-hoofed animals with enormous economic consequences. Identification of the different parameters involved in the immune response elicited against FMDV remains unclear, and it is fundamental the understanding of such parameters before effective control measures can be put in place. In the present study, we show that interleukin-10 (IL-10) production by dendritic cells (DCs) is drastically increased during acute infection with FMDV in swine. In vitro blockade of IL-10 with a neutralizing antibody against porcine IL-10 restores T cell activation by DCs. Additionally, we describe that FMDV infects DC precursors and interferes with DC maturation and antigen presentation capacity. Thus, we propose a new mechanism of virus immunity in which a non-persistent virus, FMDV, induces immunosuppression by an increment in the production of IL-10, which in turn, reduces T cell function. This reduction of T cell activity may result in a more potent induction of neutralizing antibody responses, clearing the viral infection

    Diet quality index as a predictor of treatment efficacy in overweight and obese adolescents: The EVASYON study

    Get PDF
    Background & aim: A diet quality index (DQI) is a tool that provides an overall score of an individual''s dietary intake when assessing compliance with food-based dietary guidelines. A number of DQIs have emerged, albeit their associations with health-related outcomes are debated. The aim of the present study was to assess whether adherence to dietary intervention, and the overall quality of the diet, can predict body composition changes. Methods: To this purpose, overweight/obese adolescents (n = 117, aged: 13–16 years; 51 males, 66 females) were recruited into a multi-component (diet, physical activity and psychological support) family-based group treatment programme. We measured the adolescents’ compliance and body composition at baseline and after 2 months (intensive phase) and 13 months (extensive phase) of follow-up. Also, at baseline, after 6 months, and at the end of follow-up we calculated the DQI. Results: Global compliance with the dietary intervention was 37.4% during the intensive phase, and 14.3% during the extensive phase. Physical activity compliance was 94.1% at 2-months and 34.7% at 13months and psychological support compliance were growing over the intervention period (10.3% intensive phase and 45.3% during extensive phase). Adolescents complying with the meal frequency criteria at the end of the extensive phase had greater reductions in FMI z-scores than those did not complying (Cohen''s d = 0.53). A statistically significant association was observed with the diet quality index. DQI-A variation explained 98.1% of BMI z-score changes and 95.1% of FMI changes. Conclusions: We conclude that assessment of changes in diet quality could be a useful tool in predicting body composition changes in obese adolescents involved in a diet and physical activity intervention programme backed-up by psychological and family support

    Impact of biological agents on postsurgical complications in inflammatory bowel disease: A multicentre study of Geteccu

    Get PDF
    Background: The impact of biologics on the risk of postoperative complications (PC) in inflammatory bowel disease (IBD) is still an ongoing debate. This lack of evidence is more relevant for ustekinumab and vedolizumab. Aims: To evaluate the impact of biologics on the risk of PC. Methods: A retrospective study was performed in 37 centres. Patients treated with biologics within 12 weeks before surgery were considered “exposed”. The impact of the exposure on the risk of 30-day PC and the risk of infections was assessed by logistic regression and propensity score-matched analysis. Results: A total of 1535 surgeries were performed on 1370 patients. Of them, 711 surgeries were conducted in the exposed cohort (584 anti-TNF, 58 vedolizumab and 69 ustekinumab). In the multivariate analysis, male gender (OR: 1.5; 95% CI: 1.2–2.0), urgent surgery (OR: 1.6; 95% CI: 1.2–2.2), laparotomy approach (OR: 1.5; 95% CI: 1.1–1.9) and severe anaemia (OR: 1.8; 95% CI: 1.3–2.6) had higher risk of PC, while academic hospitals had significantly lower risk. Exposure to biologics (either anti-TNF, vedolizumab or ustekinumab) did not increase the risk of PC (OR: 1.2; 95% CI: 0.97–1.58), although it could be a risk factor for postoperative infections (OR 1.5; 95% CI: 1.03–2.27). Conclusions: Preoperative administration of biologics does not seem to be a risk factor for overall PC, although it may be so for postoperative infections
    corecore