1,410 research outputs found

    Characterizing the radial oxygen abundance distribution in disk galaxies

    Full text link
    We examine the possible dependence of the radial oxygen abundance distribution on non-axisymmetrical structures (bar/spirals) and other macroscopic parameters such as the mass, the optical radius R25, the color g-r, and the surface brightness of the galaxy. A sample of disk galaxies from the CALIFA DR3 is considered. We adopted the Fourier amplitude A2 of the surface brightness as a quantitative characteristic of the strength of non-axisymmetric structures in a galactic disk, in addition to the commonly used morphologic division for A, AB, and B types based on the Hubble classification. To distinguish changes in local oxygen abundance caused by the non-axisymmetrical structures, the multiparametric mass--metallicity relation was constructed as a function of parameters such as the bar/spiral pattern strength, the disk size, color index g-r in the SDSS bands, and central surface brightness of the disk. The gas-phase oxygen abundance gradient is determined by using the R calibration. We find that there is no significant impact of the non-axisymmetric structures such as a bar and/or spiral patterns on the local oxygen abundance and radial oxygen abundance gradient of disk galaxies. Galaxies with higher mass, however, exhibit flatter oxygen abundance gradients in units of dex/kpc, but this effect is significantly less prominent for the oxygen abundance gradients in units of dex/R25 and almost disappears when the inner parts are avoided. We show that the oxygen abundance in the central part of the galaxy depends neither on the optical radius R25 nor on the color g-r or the surface brightness of the galaxy. Instead, outside the central part of the galaxy, the oxygen abundance increases with g-r value and central surface brightness of the disk.Comment: 11 pages, 6 figures; accepted for publication in A&

    Oxygen abundance distributions in six late-type galaxies based on SALT spectra of HII regions

    Full text link
    Spectra of 34 H II regions in the late-type galaxies NGC1087, NGC2967, NGC3023, NGC4030, NGC4123, and NGC4517A were observed with the South African Large Telescope (SALT). In all 34 H II regions, oxygen abundances were determined through the "counterpart" method (C method). Additionally, in two H II regions in which the auroral lines were detected oxygen abundances were measured through the classic Te method. We also estimated the abundances in our H II regions using the O3N2 and N2 calibrations and compared those with the C-based abundances. With these data we examined the radial abundance distributions in the disks of our target galaxies. We derived surface-brightness profiles and other characteristics of the disks (the surface brightness at the disk center and the disk scale length) in three photometric bands for each galaxy using publicly available photometric imaging data. The radial distributions of the oxygen abundances predicted by the relation between abundance and disk surface brightness in the W1 band obtained for spiral galaxies in our previous study are close to the radial distributions of the oxygen abundances determined from the analysis of the emission line spectra for four galaxies where this relation is applicable. Hence, when the surface-brightness profile of a late-type galaxy is known, this parametric relation can be used to estimate the likely present-day oxygen abundance in its disk.Comment: 15 pages, 11 figures; Accepted for publication in Astronomy & Astrophysic

    Detection of a new methanol maser line with ALMA

    Full text link
    Aims. We aimed at investigating the structure and kinematics of the gaseous disk and outflows around the massive YSO S255 NIRS3 in the S255IR-SMA1 dense clump. Methods. Observations of the S255IR region were carried out with ALMA at two epochs in the compact and extended configurations. Results. We serendipitously detected a new, never predicted, bright maser line at about 349.1 GHz, which most probably represents the CH3_3OH 141βˆ’14014_{1} - 14_{0} Aβˆ’+^{- +} transition. The emission covers most of the 6.7 GHz methanol maser emission area of almost 1β€²β€²^{\prime\prime} in size and shows a velocity gradient in the same sense as the disk rotation. No variability was found on the time interval of several months. It is classified as Class II maser and probably originates in a ring at a distance of several hundreds AU from the central star.Comment: 4 pages, 4 figures, accepted by Astronomy and Astrophysic

    Relations between abundance characteristics and rotation velocity for star-forming MaNGA galaxies

    Full text link
    We derive rotation curves, surface brightness profiles, and oxygen abundance distributions for 147 late-type galaxies using the publicly available spectroscopy obtained by the MaNGA survey. Changes of the central oxygen abundance (O/H)_0, the abundance at the optical radius (O/H)_R25, and the abundance gradient with rotation velocity V_rot are examined for galaxies with rotation velocities from 90 km/s to 350 km/s. We found that each relation shows a break at V_rot^* ~200 km/s. The central (O/H)_0 abundance increases with rising V_rot and the slope of the (O/H)_0 - V_rot relation is steeper for galaxies with V_rot < V_rot^*. The mean scatter of the central abundances around this relation is 0.053 dex. The relation between the abundance at the optical radius of a galaxy and its rotation velocity is similar; the mean scatter in abundances around this relation is 0.081 dex. The radial abundance gradient expressed in dex/kpc flattens with the increase of the rotation velocity. The slope of the relation is very low for galaxies with V_rot > V_rot^*. The abundance gradient expressed in dex/R25 is rougly constant for galaxies with V_rot < V_rot^*, flattens towards V_rot^*, and then again is roughly constant for galaxies with V_rot > V_rot^*. The change of the gradient expressed in terms of dex/h_d (where h_d is the disc scale length) with rotation velocity is similar to that for gradient in dex/R25. The relations between abundance characteristics and other basic parameters (stellar mass, luminosity, and radius) are also considered.Comment: Accepted for publication in the Astronomy and Astrophysic

    Breaks in surface brightness profiles and radial abundance gradients in the discs of spiral galaxies

    Full text link
    We examine the relation between breaks in the surface brightness profiles and radial abundance gradients within the optical radius in the discs of 134 spiral galaxies from the CALIFA survey. The distribution of the radial abundance (in logarithmic scale) in each galaxy was fitted by simple and broken linear relations. The surface brightness profile was fitted assuming pure and broken exponents for the disc. We find that the maximum absolute difference between the abundances in a disc given by broken and pure linear relations is less than 0.05 dex in the majority of our galaxies and exceeds the scatter in abundances for 26 out of 134 galaxies considered. The scatter in abundances around the broken linear relation is close (within a few percent) to that around the pure linear relation. The breaks in the surface brightness profiles are more prominent. The scatter around the broken exponent in a number of galaxies is lower by a factor of two or more than that around the pure exponent. The shapes of the abundance gradients and surface brightness profiles within the optical radius in a galaxy may be different. A pure exponential surface brightness profile may be accompanied by a broken abundance gradient and vise versa. There is no correlation between the break radii of the abundance gradients and surface brightness profiles. Thus, a break in the surface brightness profile does not need to be accompanied by a break in the abundance gradient.Comment: 18 pages, 17 figures, accepted for publication in A&

    On the Influence of Minor Mergers on the Radial Abundance Gradient in Disks of Milky Way-like Galaxies

    Full text link
    We investigate the influence of stellar migration caused by minor mergers (mass ratio from 1:70 to 1:8) on the radial distribution of chemical abundances in the disks of Milky Way-like galaxies during the last four Gyr. A GPU-based pure N-body tree-code model without hydrodynamics and star formation was used. We computed a large set of mergers with different initial satellite masses, positions, and orbital velocities. We find that there is no significant metallicity change at any radius of the primary galaxy in the case of accretion of a low-mass satellite of 109^9 MβŠ™_{\odot} (mass ratio 1:70) except for the special case of prograde satellite motion in the disk plane of the host galaxy. The accretion of a satellite of a mass ≳3Γ—109\gtrsim3\times10^9 MβŠ™_{\odot} (mass ratio 1:23) results in an appreciable increase of the chemical abundances at galactocentric distances larger than ∼10\sim10 kpc. The radial abundance gradient flattens in the range of galactocentric distances from 5 to 15 kpc in the case of a merger with a satellite with a mass ≳3Γ—109\gtrsim3\times10^9 MβŠ™_{\odot}. There is no significant change in the abundance gradient slope in the outer disk (from ∼15\sim15 kpc up to 25 kpc) in any merger while the scatter in metallicities at a given radius significantly increases for most of the satellite's initial masses/positions compared to the case of an isolated galaxy. This argues against attributing the break (flattening) of the abundance gradient near the optical radius observed in the extended disks of Milky Way-like galaxies only to merger-induced stellar migration.Comment: 17 pages, 15 figures, accepted for publication in Ap
    • …
    corecore