33 research outputs found
Energy use associated with tourism in New Zealand
Energy consumption and concomitant greenhouse gas emissions are seen as a major threat to sustainability within the tourism sector. In countries such as New Zealand, where tourism is an expanding sector, it is important to determine tourism's contribution to the national 'energy bill' and to identify potential areas for improvement
Modeling photosynthesis in olive leaves under drought conditions
We quantified parameters for a model of leaf-level photosynthesis for olive, and tested the model against an independent dataset. Specific temperature-dependence parameters of the model for olive leaves were measured, as well as the relationship of the model parameters with area-based leaf nitrogen (N) content. The effect of soil water deficit on leaf photosynthesis was examined by applying two irrigation treatments to 29-year-old trees growing in a plantation: drip irrigation sufficient to meet the crop water requirements (I) and dry-farming (D). In both treatments, leaves had a higher photosynthetic capacity in April than in August. In August, photosynthetic capacity was lower in D trees than in I trees. Leaf photosynthetic capacity was linearly and positively related to leaf N content on an area basis (Na) and to leaf mass per unit area (LMA), and the regression slope varied with irrigation treatment. The seasonal reduction in Na was used in the model to predict photosynthesis under drought conditions. Olive leaves showed a clear limitation of photosynthesis by triose phosphate utilization (TPU) even at 40°C, and the data suggest that olive invests fewer resources in TPU than other species. The seasonal decrease in photosynthetic capacity moderated the stomatal limitation to carbon dioxide (CO2) fixation as soil water deficit increased. Further, it enabled leaves to operate close to the transition point between photosynthetic limitation due to RuBP carboxylation capacity and that due to RuBP regeneration capacity, and resulted in a near constant value of internal CO2 concentration from April to August. Under well watered conditions, N-use efficiency of the olive leaves was enhanced at the expense of reduced water-use efficiency.Financial support was provided by Spanish CICYT, Project HID96-342- CO4-01, and an MEC fellowship to Antonio DÃaz-Espejo.Peer Reviewe
The effects of long-term, partial shading on growth and photosynthesis in Pinus radiata D. Don trees
Two 8-year-old Pinus radiata trees growing in a dry-land plantation forest were subjected to a partial shading treatment for 2 years in order to investigate the responses of photosynthesis and tree growth to a long-term reduction in illuminated leaf area. The lower 60% of the crown of shaded trees was surrounded by 50% neutral density shade cloth. This reduced radiation absorption by 13% for the trees as a whole compared to the control trees during the first year, while modelled annual whole-canopy photosynthesis was 9% lower, and was strongly regulated by seasonal soil water availability, temperature and irradiance. The shaded trees responded by increasing carbon partitioning to the branches, at the expense of the stem, As a result, basal area growth of the shaded trees was almost 50% lower than that for control trees. In the second year, the effects of the shade cloth on absorbed radiation, photosynthesis and growth were reduced. This occurred because of needle abscission below the shade cloth and rapid branch and leaf area growth above the shade cloth, while the lower foliage on the control trees became increasingly self-shaded. Allocation to stem growth increased in the shaded trees, resulting in similar relative basal area increment between shaded and control trees. The difference in modelled whole- canopy photosynthesis was smaller in the second year. This was partly due to the reduced effect of the shade cloth, but also to a significant summer drought, which severely reduced stomatal conductance, photosynthesis and stem growth in both shaded and control trees. Seasonal root-zone water deficits at this site reduce annual carbon assimilation by around 40%, and increase the proportions of carbon assimilation occurring in spring, autumn and winter. (C) 2002 Elsevier Science B.V. All rights reserved
Analysis of the growth of rimu (Dacrydium cupressinum) in South Westland, New Zealand, using process-based simulation models
Two process-based models were used to identify the environmental variables limiting productivity in a pristine, mature forest dominated by rimu (Dacrydium cupressinum Sol. ex Lamb.) trees in South Westland, New Zealand. A model of canopy net carbon uptake, incorporating routines for radiation interception, photosynthesis and water balance was used to determine a value for quantum efficiency when climate variables were not limiting. The annual net carbon uptake by the canopy was estimated to be 1.1 kg C m-2 and the quantum efficiency 22.6 mmol mol quanta-1. This value of quantum efficiency, combined with other parameters obtainable from the literature, was then used in a model of forest productivity (3-PG), to simulate changes in net productivity and the allocation of carbon to tree components. The model was adjusted to match a measured stem increment of 10.6 Mg ha-1 over a period of 13 years. To achieve this while maintaining a low, but stable value for leaf area index, it was necessary to set the site fertility rating very low and select high values for the parameters describing the proportional allocation of total carbon to roots. This approach highlighted nutrient availability as the principal constraint on productivity for the ecosystem and identified critical measurements that will be necessary for using the model to predict the effects of climate change on carbon sequestration. The low rates of carbon uptake and productivity are consistent with the low nutrient supply available from the highly leached, acid soils, most likely attributable to frequent saturation and a very shallow aerobic zone
Sectoral approaches to improve regional carbon budgets
Humans utilise about 40% of the earth's net primary production (NPP) but the products of this NPP are often managed by different sectors, with timber and forest products managed by the forestry sector and food and fibre products from croplands and grasslands managed by the agricultural sector. Other significant anthropogenic impacts on the global carbon cycle include human utilization of fossil fuels and impacts on less intensively managed systems such as peatlands, wetlands and permafrost. A great deal of knowledge, expertise and data is available within each sector. We describe the contribution of sectoral carbon budgets to our understanding of the global carbon cycle. Whilst many sectors exhibit similarities for carbon budgeting, some key differences arise due to differences in goods and services provided, ecology, management practices used, land-management personnel responsible, policies affecting land management, data types and availability, and the drivers of change. We review the methods and data sources available for assessing sectoral carbon budgets, and describe some of key data limitations and uncertainties for each sector in different regions of the world. We identify the main gaps in our knowledge/data, show that coverage is better for the developed world for most sectors, and suggest how sectoral carbon budgets could be improved in the future. Research priorities include the development of shared protocols through site networks, a move to full carbon accounting within sectors, and the assessment of full greenhouse gas budgets