4,551 research outputs found
Charmed penguin versus BAU
Since the Standard Model most probably cannot explain the large value of CP
asymmetries recently observed in D-meson decays we propose the fourth
quark-lepton generation explanation of it. As a byproduct weakly mixed leptons
of the fourth generation make it possible to save the baryon number of the
Universe from erasure by sphalerons. An impact of the 4th generation on BBN is
briefly discussed.Comment: 13 pages, 3 figures, version to be published in JETP Letter
Extending the Higgs sector: an extra singlet
An extension of the Standard Model with an additional Higgs singlet is
analyzed. Bounds on singlet admixture in 125 GeV h boson from electroweak
radiative corrections and data on h production and decays are obtained.
Possibility of double h production enhancement at 14 TeV LHC due to heavy higgs
contribution is considered.Comment: 18 pages, 7 figures. v2: one equation added; references received
after the publication of v1 are adde
New Physics at 1 TeV?
If decays of a heavy particle S are responsible for the diphoton excess with
invariant mass 750 GeV observed at the 13 TeV LHC run, it can be easily
accomodated in the Standard Model. Two scenarios are considered: production in
gluon fusion through a loop of heavy isosinglet quark(s) and production in
photon fusion through a loop of heavy isosinglet leptons. In the second case
many heavy leptons are needed or/and they should have large electric charges in
order to reproduce experimental data on .Comment: 7 pages, 4 figures, 1 tabl
Communication Society and Security: Current Threats and Legal Maintenance
Over many centuries, human societies across the globe have established progressively closer contacts. Recently, the pace of globalization has dramatically increased. Unprecedented changes in communications, transportation, and computer technology have given the process new impetus and made the world more interdependent than ever. Information resources and structures have become a tool for achieving a strategic advantage. The authenticity, credibility, and an adequate reflection of information realities represent the key challenges for the communication society. Our research aims to analyze the possibilities of establishing a profound system for countering legalization of proceeds from crime (money laundering) and creating efficient barriers against cybercrimes, such as hacking of personal data. The sphere of security of online communication processes has become an objective element of our life, and it couldn’t be ignored, especially due to further development of securing biometric personal data mechanisms
Bell inequalities for random fields
The assumptions required for the derivation of Bell inequalities are not
usually satisfied for random fields in which there are any thermal or quantum
fluctuations, in contrast to the general satisfaction of the assumptions for
classical two point particle models. Classical random field models that
explicitly include the effects of quantum fluctuations on measurement are
possible for experiments that violate Bell inequalities.Comment: 18 pages; 1 figure; v4: Essentially the published version; extensive
improvements. v3: Better description of the relationship between classical
random fields and quantum fields; better description of random field models.
More extensive references. v2: Abstract and introduction clarifie
Spectral Analysis of Multi-dimensional Self-similar Markov Processes
In this paper we consider a discrete scale invariant (DSI) process with scale . We consider to have some fix number of
observations in every scale, say , and to get our samples at discrete points
where is obtained by the equality
and . So we provide a discrete time scale
invariant (DT-SI) process with parameter space . We find the spectral representation of the covariance function of
such DT-SI process. By providing harmonic like representation of
multi-dimensional self-similar processes, spectral density function of them are
presented. We assume that the process is also Markov
in the wide sense and provide a discrete time scale invariant Markov (DT-SIM)
process with the above scheme of sampling. We present an example of DT-SIM
process, simple Brownian motion, by the above sampling scheme and verify our
results. Finally we find the spectral density matrix of such DT-SIM process and
show that its associated -dimensional self-similar Markov process is fully
specified by where is
the covariance function of th and th observations of the process.Comment: 16 page
MAX-DOAS measurements of atmospheric trace gases in Ny-Ålesund - Radiative transfer studies and their application
International audienceA new approach to derive tropospheric concentrations of some atmospheric trace gases from ground-based UV/vis measurements is described. The instrument, referred to as the MAX-DOAS, is based on the well-known UV/vis instruments, which use the sunlight scattered in the zenith sky as the light source and the method of Differential Optical Absorption Spectroscopy (DOAS) to derive column amounts of absorbers like ozone and nitrogen dioxide. Substantial enhancements have been applied to this standard setup to use different lines of sight near to the horizon as additional light sources (MAX - multi axis). Results from measurements at Ny-Ålesund (79° N, 12° E) are presented and interpreted with the full-spherical radiative transfer model SCIATRAN. In particular, measurements of the oxygen dimer O4 which has a known column and vertical distribution in the atmosphere are used to evaluate the sensitivity of the retrieval to parameters such as multiple scattering, solar azimuth, surface albedo and refraction in the atmosphere and also to validate the radiative transfer model. As a first application, measurements of NO2 emissions from a ship lying in Ny-Ålesund harbour are presented. The results of this study demonstrate the feasibility of long term UV/vis multi axis measurement that can be used to derive not only column amounts of different trace gases but also some information on the vertical location of these absorbers
The 1986?1989 ENSO cycle in a chemical climate model
International audienceA pronounced ENSO cycle occurred from 1986 to 1989, accompanied by distinct dynamical and chemical anomalies in the global troposphere and stratosphere. Reproducing these effects with current climate models not only provides a model test but also contributes to our still limited understanding of ENSO's effect on stratosphere-troposphere coupling. We performed several sets of ensemble simulations with a chemical climate model (SOCOL) forced with global sea surface temperatures. Results were compared with observations and with large-ensemble simulations performed with an atmospheric general circulation model (MRF9). We focus our analysis on the extratropical stratosphere and its coupling with the troposphere. In this context, the circulation over the North Atlantic sector is particularly important. Observed differences between the El Niño winter 1987 and the La Niña winter 1989 include a negative North Atlantic Oscillation index with corresponding changes in temperature and precipitation patterns, a weak polar vortex, a warm Arctic middle stratosphere, negative and positive total ozone anomalies in the tropics and at middle to high latitudes, respectively, as well as anomalous upward and poleward Eliassen-Palm (EP) flux in the midlatitude lower stratosphere. Most of the tropospheric features are well reproduced in the ensemble means in both models, though the amplitudes are underestimated. In the stratosphere, the SOCOL simulations compare well with observations with respect to zonal wind, temperature, EP flux, and ozone, but magnitudes are underestimated in the middle stratosphere. The polar vortex strength is well reproduced, but within-ensemble variability is too large for obtaining a significant signal in Arctic temperature and ozone. With respect to the mechanisms relating ENSO to stratospheric circulation, the results suggest that both, upward and poleward components of anomalous EP flux are important for obtaining the stratospheric signal and that an increase in strength of the Brewer-Dobson circulation is part of that signal
The Research Unit VolImpact: Revisiting the volcanic impact on atmosphere and climate – preparations for the next big volcanic eruption
This paper provides an overview of the scientific background and the research objectives of the Research Unit “VolImpact” (Revisiting the volcanic impact on atmosphere and climate – preparations for the next big volcanic eruption, FOR 2820). VolImpact was recently funded by the Deutsche Forschungsgemeinschaft (DFG) and started in spring 2019. The main goal of the research unit is to improve our understanding of how the climate system responds to volcanic eruptions. Such an ambitious program is well beyond the capabilities of a single research group, as it requires expertise from complementary disciplines including aerosol microphysical modelling, cloud physics, climate modelling, global observations of trace gas species, clouds and stratospheric aerosols. The research goals will be achieved by building on important recent advances in modelling and measurement capabilities. Examples of the advances in the observations include the now daily near-global observations of multi-spectral aerosol extinction from the limb-scatter instruments OSIRIS, SCIAMACHY and OMPS-LP. In addition, the recently launched SAGE III/ISS and upcoming satellite missions EarthCARE and ALTIUS will provide high resolution observations of aerosols and clouds. Recent improvements in modeling capabilities within the framework of the ICON model family now enable simulations at spatial resolutions fine enough to investigate details of the evolution and dynamics of the volcanic eruptive plume using the large-eddy resolving version, up to volcanic impacts on larger-scale circulation systems in the general circulation model version. When combined with state-of-the-art aerosol and cloud microphysical models, these approaches offer the opportunity to link eruptions directly to their climate forcing. These advances will be exploited in VolImpact to study the effects of volcanic eruptions consistently over the full range of spatial and temporal scales involved, addressing the initial development of explosive eruption plumes (project VolPlume), the variation of stratospheric aerosol particle size and radiative forcing caused by volcanic eruptions (VolARC), the response of clouds (VolCloud), the effects of volcanic eruptions on atmospheric dynamics (VolDyn), as well as their climate impact (VolClim)
- …