616 research outputs found

    Hopping and clustering of oxygen vacancies in SrTiO3 by anelastic relaxation

    Full text link
    The complex elastic compliance s11(w,T) of SrTiO3-d has been measured as a function of the O deficiency d < 0.01. The two main relaxation peaks in the absorption are identified with hopping of isolated O vacancies over a barrier of 0.60 eV and reorientation of pairs of vacancies involving a barrier of 1 eV. The pair binding energy is ~0.2 eV and indications for additional clustering, possibly into chains, is found already at d ~0.004. The anistropic component of the elastic dipole of an O vacancy is Deltalambda = 0.026.Comment: 4 pages, 4 figures, submitted to Phys. Rev. Let

    Non-linear Elastic Response in Solid Helium: critical velocity or strain

    Full text link
    Torsional oscillator experiments show evidence of mass decoupling in solid 4He. This decoupling is amplitude dependent, suggesting a critical velocity for supersolidity. We observe similar behavior in the elastic shear modulus. By measuring the shear modulus over a wide frequency range, we can distinguish between an amplitude dependence which depends on velocity and one which depends on some other parameter like displacement. In contrast to the torsional oscillator behavior, the modulus depends on the magnitude of stress, not velocity. We interpret our results in terms of the motion of dislocations which are weakly pinned by 3He impurities but which break away when large stresses are applied

    Quantitative treatment of the creep of metals by dislocation and rate-process theories

    Get PDF
    An equation for the steady-state rate of creep has been derived by applying the theory of dislocations to the creep of pure metals. The form of this equation is in agreement with empirical equations describing creep rates. The theory was also used to predict the dependence of steady-state rate of creep on physical constants of the material and good agreement was obtained with data in the literature for pure annealed metals. The rate of creep was found to decrease with increasing modulus of rigidity. This relation suggest that one of the requirements for a heat-resisting alloy is that its matrix be a metal that has a high modulus of rigidity and therefore a high modulus of elasticity

    Phase transitions and phase diagram of the ferroelectric perovskite NBT-BT by anelastic and dielectric measurements

    Full text link
    The complex elastic compliance and dielectric susceptibility of (Na_{0.5}Bi_{0.5})_{1-x}Ba_{x}TiO_{3} (NBT-BT) have been measured in the composition range between pure NBT and the morphotropic phase boundary included, 0 <= x <= 0.08. The compliance of NBT presents sharp peaks at the rhombohedral/tetragonal and tetragonal/cubic transitions, allowing the determination of the tetragonal region of the phase diagram, up to now impossible due to the strong lattice disorder and small distortions and polarizations involved. In spite of ample evidence of disorder and structural heterogeneity, the R-T transition remains sharp up to x = 0.06, whereas the T-C transition merges into the diffuse and relaxor-like transition associated with broad maxima of the dielectric and elastic susceptibilities. An attempt is made at relating the different features in the anelastic and dielectric curves to different modes of octahedral rotations and polar cation shifts. The possibility is also considered that the cation displacements locally have monoclinic symmetry, as for PZT near the morphotropic phase boundary.Comment: 11 pages, 9 figures, submitted to Phys. Rev.

    Effect of doping and oxygen vacancies on the octahedral tilt transitions in the BaCeO3 perovskite

    Full text link
    We present a systematic study of the effect of Y doping and hydration level on the structural transformations of BaCeO3 based on anelastic spectroscopy experiments. The temperature of the intermediate transformation between rhombohedral and orthorhombic Imma phases rises with increasing the molar fraction x of Y roughly as (500 K)x in the hydrated state, and is depressed of more than twice that amount after complete dehydration. This is explained in terms of the effect of doping on the average (Ce/Y)-O and Ba-O bond lengths, and of lattice relaxation from O vacancies. The different behavior of the transition to the lower temperature Pnma orthorhombic phase is tentatively explained in terms of progressive flattening of the effective shape of the OH ion and ordering of the O vacancies during cooling.Comment: 8 pages, 5 figure

    Low-temperature phase transformations of PZT in the morphotropic phase-boundary region

    Full text link
    We present anelastic and dielectric spectroscopy measurements of PbZr(1-x)Ti(x)O(3) with 0.455 < x < 0.53, which provide new information on the low temperature phase transitions. The tetragonal-to-monoclinic transformation is first-order for x < 0.48 and causes a softening of the polycrystal Young's modulus whose amplitude may exceed the one at the cubic-to-tetragonal transformation; this is explainable in terms of linear coupling between shear strain components and tilting angle of polarization in the monoclinic phase. The transition involving rotations of the octahedra below 200 K is visible both in the dielectric and anelastic losses, and it extends within the tetragonal phase, as predicted by recent first-principle calculations.Comment: 4 pages, 4 figure
    corecore