12,325 research outputs found

    Advanced communications payload for mobile applications

    Get PDF
    An advanced satellite payload is proposed for single hop linking of mobile terminals of all classes as well as Very Small Aperture Terminal's (VSAT's). It relies on an intensive use of communications on-board processing and beam hopping for efficient link design to maximize capacity and a large satellite antenna aperture and high satellite transmitter power to minimize the cost of the ground terminals. Intersatellite links are used to improve the link quality and for high capacity relay. Power budgets are presented for links between the satellite and mobile, VSAT, and hub terminals. Defeating the effects of shadowing and fading requires the use of differentially coherent demodulation, concatenated forward error correction coding, and interleaving, all on a single link basis

    Microbial risk factors of cardiovascular and cerebrovascular diseases: potential therapeutic options

    Get PDF
    Infection and inflammation may have a crucial role in the pathogenesis of atherosclerosis. This hypothesis is supported by an increasing number of reports on the interaction between chronic infection, inflammation, and atherogenesis. Assessment of serological and inflammatory markers of infection may be useful adjuncts in identifying those patients who are at a higher risk of developing vascular events, and in whom more aggressive treatments might be warranted

    Supporting Pedagogical Practices Through the Interactive Learning Network (ILN)

    Get PDF
    Led by Mr. James Henri, Deputy Director of CITE, the IPPO project is co-investigated by six staff members of the Division of Information & Technology Studies. Like in the IPPO project, the seminar will be run as a team effort of the IPPO team.This seminar is co-organised with the Faculty of Education Research Office In this seminar, the speakers share with participants their experiences of implementing different online pedagogical practices using the ILN, the online learning support platform that CITE has developed. The speakers will draw on a collaborative action research project, the Innovative Pedagogical Practices Online (IPPO) project, funded by HKU SPACE Research Grant and launched early in 2003 within the Division of IT&S. Objectives of the study included investigating the learning styles of part-time students in the BEd ITE and LIS programs to enhance motivation and performance. Innovative practices were developed and trialed using the ILN platform to investigate how self-directed BEd students are in their learning. The ILN is a purpose built Content and Learner Management System allowing online delivery and access to materials. It is also a community-building environment where teachers/students work as teams and engage in reflective, collegial patterns of work. It facilitates both cognitive and social scaffolding, enabling educators and students to become progressively more involved in the community to sustain their commitment and interests. This environment is designed to support academic programs that rely heavily on pedagogies that emphasize the emergence and growth of autonomous, collaborative learning, rather than teacher-directed delivery of learning materials. This presentation will outline overall pedagogical design and showcase three examples of IPPO highlighting the ILN features used. The various approaches to integrating ILN to support pedagogy, peer and student-teacher interaction, and scaffolding will be demonstrated. Lecturers will provide an assessment of how well learning outcomes were achieved in their IPPO environments.published_or_final_versionCentre for Information Technology in Education, University of Hong Kon

    Counterposition and negative phase velocity in uniformly moving dissipative materials

    Full text link
    The Lorentz transformations of electric and magnetic fields were implemented to study (i) the refraction of linearly polarized plane waves into a half-space occupied by a uniformly moving material, and (ii) the traversal of linearly polarized Gaussian beams through a uniformly moving slab. Motion was taken to occur tangentially to the interface(s) and in the plane of incidence. The moving materials were assumed to be isotropic, homogeneous, dissipative dielectric materials from the perspective of a co-moving observer. Two different moving materials were considered: from the perspective of a co-moving observer, material A supports planewave propagation with only positive phase velocity, whereas material B supports planewave propagation with both positive and negative phase velocity, depending on the polarization state. For both materials A and B, the sense of the phase velocity and whether or not counterposition occurred, as perceived by a nonco-moving observer, could be altered by varying the observer's velocity. Furthermore, the lateral position of a beam upon propagating through a uniformly moving slab made of material A, as perceived by a nonco-moving observer, could be controlled by varying the observer's velocity. In particular, at certain velocities, the transmitted beam emerged from the slab laterally displaced in the direction opposite to the direction of incident beam. The transmittances of a uniformly moving slab made of material B were very small and the energy density of the transmitted beam was largely concentrated in the direction normal to the slab, regardless of the observer's velocity

    Scattering of positrons and electrons by alkali atoms

    Get PDF
    Absolute total scattering cross sections (Q sub T's) were measured for positrons and electrons colliding with sodium, potassium, and rubidium in the 1 to 102 eV range, using the same apparatus and experimental approach (a beam transmission technique) for both projectiles. The present results for positron-sodium and -rubidium collisions represent the first Q sub T measurements reported for these collision systems. Features which distinguish the present comparisons between positron- and electron-alkali atom Q sub T's from those for other atoms and molecules (room-temperature gases) which have been used as targets for positrons and electrons are the proximity of the corresponding positron- and electron-alkali atom Q sub T's over the entire energy range of overlap, with an indication of a merging or near-merging of the corresponding positron and electron Q sub T's near (and above) the relatively low energy of about 40 eV, and a general tendency for the positron-alkali atom Q sub T's to be higher than the corresponding electron values as the projectile energy is decreased below about 40 eV

    Large-Scale Structure in Brane-Induced Gravity II. Numerical Simulations

    Full text link
    We use N-body simulations to study the nonlinear structure formation in brane-induced gravity, developing a new method that requires alternate use of Fast Fourier Transforms and relaxation. This enables us to compute the nonlinear matter power spectrum and bispectrum, the halo mass function, and the halo bias. From the simulation results, we confirm the expectations based on analytic arguments that the Vainshtein mechanism does operate as anticipated, with the density power spectrum approaching that of standard gravity within a modified background evolution in the nonlinear regime. The transition is very broad and there is no well defined Vainshtein scale, but roughly this corresponds to k_*~ 2 at redshift z=1 and k_*~ 1 at z=0. We checked that while extrinsic curvature fluctuations go nonlinear, and the dynamics of the brane-bending mode C receives important nonlinear corrections, this mode does get suppressed compared to density perturbations, effectively decoupling from the standard gravity sector. At the same time, there is no violation of the weak field limit for metric perturbations associated with C. We find good agreement between our measurements and the predictions for the nonlinear power spectrum presented in paper I, that rely on a renormalization of the linear spectrum due to nonlinearities in the modified gravity sector. A similar prediction for the mass function shows the right trends. Our simulations also confirm the induced change in the bispectrum configuration dependence predicted in paper I.Comment: 19 pages, 13 figures. v2: corrected typos, added more simulations, better test of predictions in large mass regime. v3: minor changes, published versio

    Large-scale Bias and Efficient Generation of Initial Conditions for Non-Local Primordial Non-Gaussianity

    Full text link
    We study the scale-dependence of halo bias in generic (non-local) primordial non-Gaussian (PNG) initial conditions of the type motivated by inflation, parametrized by an arbitrary quadratic kernel. We first show how to generate non-local PNG initial conditions with minimal overhead compared to local PNG models for a general class of primordial bispectra that can be written as linear combinations of separable templates. We run cosmological simulations for the local, and non-local equilateral and orthogonal models and present results on the scale-dependence of halo bias. We also derive a general formula for the Fourier-space bias using the peak-background split (PBS) in the context of the excursion set approach to halos and discuss the difference and similarities with the known corresponding result from local bias models. Our PBS bias formula generalizes previous results in the literature to include non-Markovian effects and non-universality of the mass function and are in better agreement with measurements in numerical simulations than previous results for a variety of halo masses, redshifts and halo definitions. We also derive for the first time quadratic bias results for arbitrary non-local PNG, and show that non-linear bias loops give small corrections at large-scales. The resulting well-behaved perturbation theory paves the way to constrain non-local PNG from measurements of the power spectrum and bispectrum in galaxy redshift surveys.Comment: 43 pages, 10 figures. v2: references added. 2LPT parallel code for generating non-local PNG initial conditions available at http://cosmo.nyu.edu/roman/2LP

    Filtering data streams for entity-based continuous queries

    Get PDF
    The idea of allowing query users to relax their correctness requirements in order to improve performance of a data stream management system (e.g., location-based services and sensor networks) has been recently studied. By exploiting the maximum error (or tolerance) allowed in query answers, algorithms for reducing the use of system resources have been developed. In most of these works, however, query tolerance is expressed as a numerical value, which may be difficult to specify. We observe that in many situations, users may not be concerned with the actual value of an answer, but rather which object satisfies a query (e.g., "who is my nearest neighbor?). In particular, an entity-based query returns only the names of objects that satisfy the query. For these queries, it is possible to specify a tolerance that is "nonvalue-based. In this paper, we study fraction-based tolerance, a type of nonvalue-based tolerance, where a user specifies the maximum fractions of a query answer that can be false positives and false negatives. We develop fraction-based tolerance for two major classes of entity-based queries: 1) nonrank-based query (e.g., range queries) and 2) rank-based query (e.g., k-nearest-neighbor queries). These definitions provide users with an alternative to specify the maximum tolerance allowed in their answers. We further investigate how these definitions can be exploited in a distributed stream environment. We design adaptive filter algorithms that allow updates be dropped conditionally at the data stream sources without affecting the overall query correctness. Extensive experimental results show that our protocols reduce the use of network and energy resources significantly. © 2006 IEEE.published_or_final_versio
    • …
    corecore