5 research outputs found

    Damage in porous media due to salt crystallization

    Get PDF
    We investigate the origins of salt damage in sandstones for the two most common salts: sodium chloride and sulfate. The results show that the observed difference in damage between the two salts is directly related to the kinetics of crystallization and the interfacial properties of the salt solutions and crystals with respect to the stone. We show that, for sodium sulfate, the existence of hydrated and anhydrous crystals and specifically their dissolution and crystallization kinetics are responsible for the damage. Using magnetic resonance imaging and optical microscopy we show that when water imbibes sodium sulfate contaminated sandstones, followed by drying at room temperature, large damage occurs in regions where pores are fully filled with salts. After partial dissolution, anhydrous sodium sulfate salt present in these regions gives rise to a very rapid growth of the hydrated phase of sulfate in the form of clusters that form on or close to the remaining anhydrous microcrystals. The rapid growth of these clusters generates stresses in excess of the tensile strength of the stone leading to the damage. Sodium chloride only forms anhydrous crystals that consequently do not cause damage in the experiments

    Ion Transport and Precipitation Kinetics as Key Aspects of Stress Generation on Pore Walls Induced by Salt Crystallization

    Get PDF
    International audienceThe stress generation on pore walls due to the growth of a sodium chloride crystal in a confined aqueous solution is studied from evaporation experiments in microfluidic channels in conjunction with numerical computations of crystal growth. The study indicates that the stress build-up on the pore walls as the result of the crystal growth is a highly transient process taking place over a very short period of time (in less than 1s in our experiments). The analysis makes clear that what matters for the stress generation is not the maximum supersaturation at the onset of the crystal growth but the supersaturation at the interface between the solution and the crystal when the latter is about to be confined between the pore walls. It is shown that the stress generation can be characterized with a simple stress diagram involving the pore aspect ratio and the Damkhöler number characterizing the competition between the precipitation reaction kinetics and the ion transport towards the growing crystal. This opens up the route for a better understanding of the damage of porous materials induced by salt crystallization, an important issue in earth sciences, reservoir engineering and civil engineering

    Drying of salt contaminated porous media: effect of primary and secondary nucleation

    Get PDF
    The drying of porous media is of major importance for civil engineering, geophysics, petrophysics, and the conservation of stone artworks and buildings. More often than not, stones contain salts that can be mobilized by water (e.g., rain) and crystallize during drying. The drying speed is strongly influenced by the crystallization of the salts, but its dynamics remains incompletely understood. Here, we report that the mechanisms of salt precipitation, specifically the primary or secondary nucleation, and the crystal growth are the key factors that determine the drying behaviour of salt contaminated porous materials and the physical weathering generated by salt crystallization. When the same amount of water is used to dissolve the salt present in a stone, depending on whether this is done by a rapid saturation with liquid water or by a slow saturation using water vapor, different evaporation kinetics and salt weathering due to different crystallization pathways are observed
    corecore