215 research outputs found

    Precision Measurements of d(d,p)t and d(d,n)^3He Total Cross Sections at Big-Bang Nucleosynthesis Energies

    Full text link
    Recent Wilkinson Microwave Anisotropy Probe (WMAP) measurements have determined the baryon density of the Universe Ωb\Omega_b with a precision of about 4%. With Ωb\Omega_b tightly constrained, comparisons of Big Bang Nucleosynthesis (BBN) abundance predictions to primordial abundance observations can be made and used to test BBN models and/or to further constrain abundances of isotopes with weak observational limits. To push the limits and improve constraints on BBN models, uncertainties in key nuclear reaction rates must be minimized. To this end, we made new precise measurements of the d(d,p)t and d(d,n)^3He total cross sections at lab energies from 110 keV to 650 keV. A complete fit was performed in energy and angle to both angular distribution and normalization data for both reactions simultaneously. By including parameters for experimental variables in the fit, error correlations between detectors, reactions, and reaction energies were accurately tabulated by computational methods. With uncertainties around 2% +/- 1% scale error, these new measurements significantly improve on the existing data set. At relevant temperatures, using the data of the present work, both reaction rates are found to be about 7% higher than those in the widely used Nuclear Astrophysics Compilation of Reaction Rates (NACRE). These data will thus lead not only to reduced uncertainties, but also to modifications in the BBN abundance predictions.Comment: 15 pages, 11 figures, minor editorial change

    Application of Ion Implantation for Synthesis of Copper Nanoparticles in a Zinc Oxide Matrix for Obtaining New Nonlinear Optical Materials

    Get PDF
    We have obtained a layered composite material by implantation of single crystal zinc oxide (ZnO) substrates with 160-keV Cu+ ions to a dose of 10(16) or 10(17) cm(-2). The composite was studied by linear optical absorption spectroscopy; the nonlinear optical characteristics were determined by means of Z-scanning at a laser radiation wavelength of 532 nm. The appearance of the optical plasmon resonance bands in the spectra indicated that ion implantation to the higher dose provides for the formation of copper nanoparticles in a subsurface layer of ZnO. The new nonlinear optical material comprising metal nanoparticles in a ZnO matrix exhibits the phenomenon of self-defocusing and possesses a high nonlinear absorption coefficient (beta = 2.07 x 10(-3) cm/W). (C) 2004 MAIK "Nauka / Interperiodica"

    Studying the ferromagnetic–paramagnetic phase transition in thin films of L1<inf>0</inf> FePt<inf>1–x</inf>Rh<inf>x</inf>

    Get PDF
    © 2015, Allerton Press, Inc. FePtRh films with different Rh concentrations (FePt1–xRhx) are fabricated by magnetron sputtering. The magnetic structure and ferromagnetic–paramagnetic phase transition in thin films of L10 FePt1–xRhx with different Rh concentrations (0 ≤ x ≤ 0.40) are studied. It is demonstrated that thin films of FePt1–xRhx with 0 < x < 0.34 are in the ferromagnetic state with high magnetocrystalline anisotropy energy at room temperature, while similar films with 0.34 < x < 0.4 are paramagnetic

    Modeling of changes in heat resistance of nickel-based alloys using bayesian artificial neural networks

    Get PDF
    Resource design of gas turbine engines and installations requires extensive information about the heat resistance of nickel-based superalloys, from which the most critical parts of aircraft and marine engines, pumps of gas-oil pumping stations and power plants are made. The problems are that the data on the heat resistance obtained as a result of testing each alloy under study are quite limited. In the present paper, the task of modelling changes in the heat resistance of nickel-based superalloy on the basis of available experimental data is solved. To solve the task, the most modern approach, the neural network modeling method, was applied. The input data are chemical compositions of heat-resistant nickel-based superalloys and the values of their heat resistance obtained experimentally. The output data are the calculated values of heat resistance modeled by an artificial neural network. In the course of the work, transformations of the input data were carried out to reduce the standard deviation of the modeling of the output data. The choice of the neural network configuration was made in order to achieve the highest possible accuracy. As a result, a neural network of direct error propagation was used, with 27 neurons on the input layer, 13 neurons in the hidden layer and 1 neuron in the output layer. To validate the results of the predictions, a group of alloys with the maximum number of known experimental values of heat resistance was randomly selected before the input of data into the network. After preparing the data, selecting the configuration and training the network, the chemical compositions of the selected group were loaded and their heat resistance values were calculated. Comparison of the obtained data with the experimental data showed high efficiency of the method. As a result, data on the change of heat resistance for the studied alloys were obtained and an analytical expression describing the obtained dependences was formulated. © 2020, Institute for Metals Superplasticity Problems of Russian Academy of Sciences. All rights reserved

    Superior strength of carbon steel with an ultrafine-grained microstructure and its enhanced thermal stability

    Get PDF
    © 2015, Springer Science+Business Media New York. The paper presents the results of a study on the microstructure and mechanical properties of a medium-carbon steel (0.45 % C) processed by severe plastic deformation (SPD) via high-pressure torsion (HPT). Martensite quenching was first applied to the material, and then HPT processing was conducted at a temperature of 350 °C. As a result, a nanocomposite type microstructure is formed: an ultrafine-grained (UFG) ferrite matrix with fine cementite particles located predominantly at the boundaries of ferrite grains. The processed steel is characterized by a high-strength state, with an ultimate tensile strength over 2500 MPa. Special attention is given to analysis of the thermal stability of the microstructure and properties of the steel after HPT processing in comparison with quenching. It is shown that the thermal stability of the UFG structure produced by HPT is visibly higher than that of quenching-induced martensite. The origin of the enhanced strength and thermal stability of the UFG steel is discussed

    ОПРЕДЕЛЕНИЕ УРАНА В ВОДНЫХ РАСТВОРАХ МЕТОДОМ ВРЕМЯПРОЛЕТНОЙ МАСС-СПЕКТРОМЕТРИИ С ИМПУЛЬСНЫМ ТЛЕЮЩИМ РАЗРЯДОМ ПОСЛЕ ЕГО КОНЦЕНТРИРОВАНИЯ ОКИСЛЕННЫМИ УГЛЕРОДНЫМИ НАНОТРУБКАМИ

    Get PDF
    The pollution of the environment with uranium dictates the need to control the concentration of this element in natural waters to the permissible limits for the stability of the ecosystems and public health. In 2011, WHO set maximum permissible concentration of uranium in water to 0.03 ppm due to the strong toxicity and radioactivity of uranium in water. Therefore, the continuous monitoring of uranium content is an important task for the safety and health of the citizens. To determine the low uranium content in natural waters, the conservation of the studied solutions is necessary. However, this method of storage and transportation is not always simple. In the current paper, as a convenient method of concentrating uranium, preserving the sample and transporting it, we used the method of sorbing uranium on sorbents. Single-layer carbon nanotubes were used as sorbents. Their surfaces were modified using wet chemical oxidation and synthesis with Aerosil A-380 silica. Two schemes were considered for concentrating the uranium on the surface of the sorbent: individual carbon nanotubes and nanotubes modified with silica. The direct analysis was used to determine the content of uranium in the sorbent, namely, time-of-flight mass spectrometry with the pulsed glow discharge (GDMS). The most effective approach for the determination of uranium in water was the sorption of uranium on the tablet consisting of oxidized nanotubes modified with silica. The limit of detection in this case was 0.2 ppb.Keywords: mass-spectrometry, pulsed glow discharge, environment, direct analysis, uranium, carbon nanotubes  DOI: http://dx.doi.org/10.15826/analitika.2020.24.2.001Titova A.D1, Postnov V.N.1, Savinov S.S.1, Stolyarova N.V.2, Ivanenko N.B.2, Chuchina V.A.1, Gubal A.R.1, Ganeev A.A.1,21Saint-Petersburg State University (SPBU),Universitetskaya emb., 7/9, Saint-Petersburg, 199034, Russian Federation2Institute of Toxicology of Federal Medico-Biological Agency,ul. Bekhtereva, 1, Saint-Petersburg, 192019, Russian FederationЗагрязнение окружающей среды ураном диктует необходимость контроля концентрации этого элемента в природных водах до допустимых пределов, что необходимо для стабильности экосистем и здоровья населения. Из-за сильной токсичности и радиоактивности в 2011 году ВОЗ установила предельно допустимую концентрацию урана в воде – 0.03 ppm. При транспортировке проб природной воды с низким содержанием урана (на уровне ПДК) их консервируют. В качестве удобного способа транспортировки пробы и одновременного концентрирования урана в данной работе предложено сорбировать его на однослойных углеродных нанотрубках. Поверхность углеродных нанотрубок предварительно модифицировали химическим окислением и обрабатывали кремнеземом аэросил А-380. Рассматривали два варианта концентрирования урана на поверхность сорбента: индивидуальные и модифицированные кремнеземом углеродные нанотрубки. Для анализа использовали прямой метод определения содержания урана в сорбенте − времяпролетную масс-спектрометрию с импульсным тлеющим разрядом (GD-MS). Показано, что наиболее эффективным подходом для определения урана в воде стала сорбция урана на таблетку, состоящую из модифицированных кремнеземом окисленных нанотрубок. Предел обнаружения при этом составил 0.2 ppb.Ключевые слова: масс-спектрометрия, импульсный тлеющий разряд, окружающая среда, прямой анализ, уран, углеродные нанотрубкиDOI: http://dx.doi.org/10.15826/analitika.2020.24.2.00

    Prospects in Analytical Atomic Spectrometry

    Full text link
    Tendencies in five main branches of atomic spectrometry (absorption, emission, mass, fluorescence and ionization spectrometry) are considered. The first three techniques are the most widespread and universal, with the best sensitivity attributed to atomic mass spectrometry. In the direct elemental analysis of solid samples, the leading roles are now conquered by laser-induced breakdown and laser ablation mass spectrometry, and the related techniques with transfer of the laser ablation products into inductively-coupled plasma. Advances in design of diode lasers and optical parametric oscillators promote developments in fluorescence and ionization spectrometry and also in absorption techniques where uses of optical cavities for increased effective absorption pathlength are expected to expand. Prospects for analytical instrumentation are seen in higher productivity, portability, miniaturization, incorporation of advanced software, automated sample preparation and transition to the multifunctional modular architecture. Steady progress and growth in applications of plasma- and laser-based methods are observed. An interest towards the absolute (standardless) analysis has revived, particularly in the emission spectrometry.Comment: Proofread copy with an added full reference list of 279 citations. A pdf version of the final published review may be requested from Alexander Bol'shakov <[email protected]

    Determination of uranium in aqueous solutions by the time-of-flight mass-spectrometry with a pulsed glow discharge after its accumulation on the oxidized carbon nanotubes

    Full text link
    Загрязнение окружающей среды ураном диктует необходимость контроля концентрации этого элемента в природных водах до допустимых пределов, что необходимо для стабильности экосистем и здоровья населения. Из-за сильной токсичности и радиоактивности в 2011 году ВОЗ установила предельно допустимую концентрацию урана в воде – 0.03 ppm. При транспортировке проб природной воды с низким содержанием урана (на уровне ПДК) их консервируют. В качестве удобного способа транспортировки пробы и одновременного концентрирования урана в данной работе предложено сорбировать его на однослойных углеродных нанотрубках. Поверхность углеродных нанотрубок предварительно модифицировали химическим окислением и обрабатывали кремнеземом аэросил А-380. Рассматривали два варианта концентрирования урана на поверхность сорбента: индивидуальные и модифицированные кремнеземом углеродные нанотрубки. Для анализа использовали прямой метод определения содержания урана в сорбенте − времяпролетную масс-спектрометрию с импульсным тлеющим разрядом (GD-MS). Показано, что наиболее эффективным подходом для определения урана в воде стала сорбция урана на таблетку, состоящую из модифицированных кремнеземом окисленных нанотрубок. Предел обнаружения при этом составил 0.2 ppb.The pollution of the environment with uranium dictates the need to control the concentration of this element in natural waters to the permissible limits for the stability of the ecosystems and public health. In 2011, WHO set maximum permissible concentration of uranium in water to 0.03 ppm due to the strong toxicity and radioactivity of uranium in water. Therefore, the continuous monitoring of uranium content is an important task for the safety and health of the citizens. To determine the low uranium content in natural waters, the conservation of the studied solutions is necessary. However, this method of storage and transportation is not always simple. In the current paper, as a convenient method of concentrating uranium, preserving the sample and transporting it, we used the method of sorbing uranium on sorbents. Single-layer carbon nanotubes were used as sorbents. Their surfaces were modified using wet chemical oxidation and synthesis with Aerosil A-380 silica. Two schemes were considered for concentrating the uranium on the surface of the sorbent: individual carbon nanotubes and nanotubes modified with silica. The direct analysis was used to determine the content of uranium in the sorbent, namely, time-of-flight mass spectrometry with the pulsed glow discharge (GDMS). The most effective approach for the determination of uranium in water was the sorption of uranium on the tablet consisting of oxidized nanotubes modified with silica. The limit of detection in this case was 0.2 ppb.Авторы выражают благодарность научному парку Санкт-Петербургского Государственного Университета: ресурсному центру «Оптические и лазерные методы исследования вещества» за выполнение исследований на сканирующем электронном микроскопе, ресурсному центру «Инновационные технологии композиционных наноматериалов» за выполнение исследований по определению эффективной площади поверхности сорбента. Исследования, посвященные разработке и оптимизации условий для послойного распыления образца из прессованных нанотрубок и определения профиля кратера, были выполнены при поддержке гранта РНФ N 17-73-20089.The authors are grateful to the science park of St. Petersburg State University: the “Optical and Laser Methods for the Study of Substances” Resource Center for performing the research on the scanning electron microscope, the “Innovative Technologies of Composite Nanomaterials” Resource Center for carrying out the studies to determine the effective surface area of the sorbent. The investigations devoted to the depth profile analysis and the determination of crater profile have been supported by a grant from the Russian Science Foundation (grant No. 17-73-20089)

    Primordial Nucleosynthesis for the New Cosmology: Determining Uncertainties and Examining Concordance

    Full text link
    Big bang nucleosynthesis (BBN) and the cosmic microwave background (CMB) have a long history together in the standard cosmology. The general concordance between the predicted and observed light element abundances provides a direct probe of the universal baryon density. Recent CMB anisotropy measurements, particularly the observations performed by the WMAP satellite, examine this concordance by independently measuring the cosmic baryon density. Key to this test of concordance is a quantitative understanding of the uncertainties in the BBN light element abundance predictions. These uncertainties are dominated by systematic errors in nuclear cross sections. We critically analyze the cross section data, producing representations that describe this data and its uncertainties, taking into account the correlations among data, and explicitly treating the systematic errors between data sets. Using these updated nuclear inputs, we compute the new BBN abundance predictions, and quantitatively examine their concordance with observations. Depending on what deuterium observations are adopted, one gets the following constraints on the baryon density: OmegaBh^2=0.0229\pm0.0013 or OmegaBh^2 = 0.0216^{+0.0020}_{-0.0021} at 68% confidence, fixing N_{\nu,eff}=3.0. Concerns over systematics in helium and lithium observations limit the confidence constraints based on this data provide. With new nuclear cross section data, light element abundance observations and the ever increasing resolution of the CMB anisotropy, tighter constraints can be placed on nuclear and particle astrophysics. ABRIDGEDComment: 54 pages, 20 figures, 5 tables v2: reflects PRD version minor changes to text and reference
    corecore