23 research outputs found

    Formation of civic competence of future teachers in the educational process of higher education

    Get PDF
    The article reveals the essence of the concept of “civic competence of future teachers”, defined as a set of readiness and ability to actively and responsibly implement the principles of state policy in the field of education in the educational process, be guided by legal acts, observe the rights and obligations of a member of a democratic society, educate the younger generation in the spirit of humanism and diversity. Theoretical and methodological grounds for the formation of civic competence of future teachers based on the integration of the ideas of scientific approaches and the use of the case-study method in the educational process are revealed. It is shown that the case-study method in the civic education of future teachers will contribute to the formation of a person's civic competence as a set of readiness and abilities that enable her to actively and responsibly implement the entire range of civic rights and obligations in a democratic society, effectively apply the acquired knowledge and skills in practical activities

    Flaxseed Lignan Complex Administration in Older Human Type 2 Diabetics Manages Central Obesity and Prothrombosis—An Invitation to Further Investigation into Polypharmacy Reduction

    Get PDF
    Aim. Animal and human study evidence supports the hypothesis that flaxseed lignan complex (FLC) at a dose of 600 mg secoisolariciresinol diglucoside (SDG)/day for three months would combat hyperglycaemia, dyslipidemia, blood pressure, central obesity, prothrombotic state, inflammation, and low density lipoprotein (LDL) oxidation. Methods. Sixteen type 2 diabetic patients completed this double-blind, randomised crossover placebo-controlled study. A univariate repeated measures analysis of covariance (significance P<0.05) was followed by a mixed linear model effects analysis corrected for multiple comparisons (MCC). Results. Prior to MCC, FLC caused decreased fasting plasma glucose, A1c, inflammation (c-reactive protein (CRP) and interleukin-6 (IL-6)), and increased bleeding time. After correction for multiple comparisons, FLC induced a statistically significant increase in bleeding time and smaller waist circumference gain. No treatment effect occurred in the other variables before or after adjustment. Conclusions. It is concluded that FLC significantly increased bleeding time thus reducing the prothrombotic state, reduced central obesity gain as measured by waist circumference, and did not affect significantly the other dependent variables measured after adjustment for multiple comparisons. These findings, not yet published in human type 2 diabetes, suggest that this FLC dose over at least three months, may, subject to further investigation, reduce polypharmacy

    Obtaining the Enoxaparin Sodium Substance Equivalent to the Original Clexane® and Lovenox®. The Selection of Technological Parameters and Optimization of the “Greenness” of the Purification Stage

    Get PDF
    The aim of the study was to adjust and optimize the purification stage of crude enoxaparin sodium to obtain a substance equivalent to the original drugs Clexane® and Lovenox® according to the criteria specified by the FDA. The purification stage involves the reprecipitation of crude enoxaparin in methanol. Determining the ratio of solvents required for the reprecipitation is important for studying the correlation between the experimental conditions of the technological process and the structural characteristics of enoxaparin samples. In the study, the method of purification of enoxaparin sodium described in the patent was assessed, and the following variations of the MeOH:H2O solvent ratio were selected – 4:1; 2:1; 1:1. The obtained samples of enoxaparin sodium were analyzed according to the in-house specification developed on the basis of the pharmacopoeial monograph, as well as by non-pharmacopoeial methods, such as two-dimensional NMR spectroscopy (HSQC) and size exclusion chromatography (SEC) for detailed characterization of the molecule. Strategies of greening of the enoxaparin sodium purification stage by reducing the E-factor were also considered in the study. Considering the principles of “green” chemistry, the method of purification of crude enoxaparin sodium was optimized by the solvent regeneration. It was experimentally possible to demonstrate the effect of the solvent ratio at the stage of purification of crude enoxaparin on the composition, as well as on the number and distribution of oligosaccharide fractions in the molecule. Based on the results of the study, it can be concluded that the ratio of MeOH:H2O=1:1 allows obtaining samples that are closest to Clexane® and Lovenox® in terms of the molecular weight distribution profile and the composition profile. The E-factor was also reduced from 14 to 5.25 by solvent regeneration

    Benzophenone photosensitized DNA damage

    Full text link
    [EN] A lthough the carcinogenic potential of ultraviolet radiation is well-known, UV light may interact with DNA by direct absorption or through photosensitization by endogenous or exogenous chromophores. These chromophores can extend the ¿active¿ fraction of the solar spectrum to the UVA region and beyond, which means that photosensitizers increase the probability of developing skin cancer upon exposure to sunlight. Therefore researchers would like to understand the mechanisms involved in photosensitized DNA damage both to anticipate possible photobiological risks and to design tailor-made photoprotection strategies. In this context, photosensitized DNA damage can occur through a variety of processes including electron transfer, hydrogen abstraction, triplet triplet energy transfer, or generation of reactive oxygen species. In this Account, we have chosen benzophenone (BP) as a classical and paradigmatic chromophore to illustrate the different lesions that photosensitization may prompt in nucleosides, in oligonucleotides, or in DNA. Thus, we discuss in detail the accumulated mechanistic evidence of the BP-photosensitized reactions of DNA or its building blocks obtained by our group and others. We also include ketoprofen (KP), a BP-derivative that possesses a chiral center, to highlight the stereodifferentiation in the key photochemical events, revealed through the dynamics of the reactive triplet excited state (3KP*). Our results show that irradiation of the BP chromophore in the presence of DNA or its components leads to nucleobase oxidations, cyclobutane pyrimidine dimer formation, single strand breaks, DNA protein cross-links, or abasic sites. We attribute the manifold photoreactivity of BP to its well established photophysical properties: (i) it absorbs UV light, up to 360 nm; (ii) its intersystem crossing quantum yield (OISC) is almost 1; (iii) the energy of its n¿* lowest triplet excited state (ET) is ca. 290 kJ mol 1; (iv) it produces singlet oxygen (1O2)with a quantum yield (¿¿) of ca. 0.3. For electron transfer and singlet oxygen reactions, we focused on guanine, the nucleobase with the lowest oxidation potential. Among the possible oxidative processes, electron transfer predominates. Conversely, triplet triplet energy transfer occurs mainly from 3BP* to thymine, the base with the lowest lying triplet state in DNA. This process results in the formation of cyclobutane pyrimidine dimers, but it also competes with the Patern o B¿uchi reaction in nucleobases or nucleosides, giving rise to oxetanes as a result of crossed cycloadditions. Interestingly, we have found significant stereodifferentiation in the quenching of the KP triplet excited state by both 20-deoxyguanosine and thymidine. Based on these results, this chromophore shows potential as a (chiral) probe for the investigation of electron and triplet energy transport in DNA.We thank our co-workers who contributed to this research whose names appear in the references. Financial support from the Spanish Government (Grant CTQ2009-13699, JAE Doc fellowship for M.C.C, and Ramon y Cajal contract for V.L.-V.) is gratefully acknowledged.Cuquerella Alabort, MC.; Lhiaubet ., VL.; Cadet, J.; Miranda Alonso, MÁ. (2012). Benzophenone photosensitized DNA damage. Accounts of Chemical Research. 45(9):1558-1570. https://doi.org/10.1021/ar300054eS1558157045
    corecore