242 research outputs found

    Monitoring wild animal communities with arrays of motion sensitive camera traps

    Get PDF
    Studying animal movement and distribution is of critical importance to addressing environmental challenges including invasive species, infectious diseases, climate and land-use change. Motion sensitive camera traps offer a visual sensor to record the presence of a broad range of species providing location -specific information on movement and behavior. Modern digital camera traps that record video present new analytical opportunities, but also new data management challenges. This paper describes our experience with a terrestrial animal monitoring system at Barro Colorado Island, Panama. Our camera network captured the spatio-temporal dynamics of terrestrial bird and mammal activity at the site - data relevant to immediate science questions, and long-term conservation issues. We believe that the experience gained and lessons learned during our year long deployment and testing of the camera traps as well as the developed solutions are applicable to broader sensor network applications and are valuable for the advancement of the sensor network research. We suggest that the continued development of these hardware, software, and analytical tools, in concert, offer an exciting sensor-network solution to monitoring of animal populations which could realistically scale over larger areas and time spans

    Camera traps enable the estimation of herbaceous aboveground net primary production (ANPP) in an African savanna at high temporal resolution

    Get PDF
    Determining the drivers of aboveground net primary production (ANPP), a key ecosystem process, is an important goal of ecosystem ecology. However, accurate estimation of ANPP across larger areas remains challenging, especially for savanna ecosystems that are characterized by large spatiotemporal heterogeneity in ANPP. Satellite remote sensing methods are frequently used to estimate productivity at the landscape scale but generally lack the spatial and temporal resolution to capture the determinants of productivity variation. Here, we developed and tested methods for estimating herbaceous productivity as an alternative to labour-intensive repeated biomass clipping and caging of small plots. We compared measures of three spectral greenness indices, normalized difference vegetation index derived from Sentinel-2 (NDVIs) and a handheld radiometer (NDVIg), and green chromatic coordinate derived from digital repeat cameras (GCC) and tested their relationship to biweekly field-measured herbaceous ANPP using movable exclosures. We found that a satellite-based model including average NDVIs and its rate of change (ΔNDVIs) over the biweekly productivity measurement interval predicted herbaceous ANPP reasonably well (Jackknife R2 = 0.26). However, the predictive accuracy doubled (Jackknife R2 = 0.52) when including the sum of day to day increases in camera trap-derived vegetation greenness (tGCC). This result can be considered promising, given the current lack of productivity estimation methods at comparable spatiotemporal resolution. We furthermore found that the fine (daily) temporal resolution of GCC time series captured fast vegetation responses to rainfall events that were missed when using a coarser temporal resolution (>2 days). These findings demonstrate the importance of measuring at a fine temporal resolution for predicting herbaceous ANPP in savanna ecosystems. We conclude that camera traps are promising in offering a reliable and cost-effective method to estimate productivity in savannas and contribute to a better understanding of ecosystem functioning and its drivers

    Identifying key denning habitat to conserve brown bear (Ursus arctos) in Croatia

    Get PDF
    CONTEXT: The preservation of denning habitat is paramount to the recovery of threatened bear populations because of the effect that den site disturbance can have on cub mortality. Understanding habitat suitability for denning can allow management efforts to be directed towards the regions where conservation interventions would be most effective. AIM: We sought to identify the environmental and anthropogenic habitat variables associated with the presence of Eurasian brown bear (Ursus arctos) den sites in Croatia. Based on these associations, in order to inform future conservation decisions, we also sought to identify regions of high suitability for denning across Croatia. METHODS: Using the locations of 91 dens inhabited by bears between 1982 and 2011, we opted for the presence-only modelling option in software Maxent to determine the most important predictors of den presence, and thus predict the distribution of high-value denning habitat across Croatia. KEY RESULTS: We found that structural elements were the most important predictors, with ruggedness and elevation both relating positively to den presence. However, distance to nearest settlement was also positively associated with den presence. CONCLUSION: We determine that there is considerable denning habitat value in areas with high and rugged terrain as well as areas with limited human activity. We suspect that high and rugged terrain contains a greater concentration of the karstic formations used for denning than lower-lying regions. IMPLICATIONS: Our study presents the first habitat suitability model for brown bears in Croatia, and identifies core areas suitable for denning both within and outside the species’ current range. As such, it provides useful evidence for conservation decision making and the development of scientifically-based management plans. Our results also support the need for finer spatial scale studies that can reveal specific denning preferences of subpopulations

    Density responses of lesser-studied carnivores to habitat and management strategies in southern Tanzania's Ruaha-Rungwa landscape.

    Get PDF
    Compared to emblematic large carnivores, most species of the order Carnivora receive little conservation attention despite increasing anthropogenic pressure and poor understanding of their status across much of their range. We employed systematic camera trapping and spatially explicit capture-recapture modelling to estimate variation in population density of serval, striped hyaena and aardwolf across the mixed-use Ruaha-Rungwa landscape in southern Tanzania. We selected three sites representative of different habitat types, management strategies, and levels of anthropogenic pressure: Ruaha National Park’s core tourist area, dominated by Acacia-Commiphora bushlands and thickets; the Park’s miombo woodland; and the neighbouring community-run MBOMIPA Wildlife Management Area, also covered in Acacia-Commiphora. The Park’s miombo woodlands supported a higher serval density (5.56 [Standard Error = ±2.45] individuals per 100 km2) than either the core tourist area (3.45 [±1.04] individuals per 100 km2) or the Wildlife Management Area (2.08 [±0.74] individuals per 100 km2). Taken together, precipitation, the abundance of apex predators, and the level of anthropogenic pressure likely drive such variation. Striped hyaena were detected only in the Wildlife Management Area and at low density (1.36 [±0.50] individuals per 100 km2), potentially due to the location of the surveyed sites at the edge of the species’ global range, high densities of sympatric competitors, and anthropogenic edge effects. Finally, aardwolf were captured in both the Park’s core tourist area and the Wildlife Management Area, with a higher density in the Wildlife Management Area (13.25 [±2.48] versus 9.19 [±1.66] individuals per 100 km2), possibly as a result of lower intraguild predation and late fire outbreaks in the area surveyed. By shedding light on three understudied African carnivore species, this study highlights the importance of miombo woodland conservation and community-managed conservation, as well as the value of by-catch camera trap data to improve ecological knowledge of lesser-studied carnivores

    Characterising Wildlife Trade Market Supply-Demand Dynamics.

    Get PDF
    The trade in wildlife products can represent an important source of income for poor people, but also threaten wildlife locally, regionally and internationally. Bushmeat provides livelihoods for hunters, traders and sellers, protein to rural and urban consumers, and has depleted the populations of many tropical forest species. Management interventions can be targeted towards the consumers or suppliers of wildlife products. There has been a general assumption in the bushmeat literature that the urban trade is driven by consumer demand with hunters simply fulfilling this demand. Using the urban bushmeat trade in the city of Kumasi, Ghana, as a case study, we use a range of datasets to explore the processes driving the urban bushmeat trade. We characterise the nature of supply and demand by explicitly considering three market attributes: resource condition, hunter behaviour, and consumer behaviour. Our results suggest that bushmeat resources around Kumasi are becoming increasingly depleted and are unable to meet demand, that hunters move in and out of the trade independently of price signals generated by the market, and that, for the Kumasi bushmeat system, consumption levels are driven not by consumer choice but by shortfalls in supply and consequent price responses. Together, these results indicate that supply-side processes dominate the urban bushmeat trade in Kumasi. This suggests that future management interventions should focus on changing hunter behaviour, although complementary interventions targeting consumer demand are also likely to be necessary in the long term. Our approach represents a structured and repeatable method to assessing market dynamics in information-poor systems. The findings serve as a caution against assuming that wildlife markets are demand driven, and highlight the value of characterising market dynamics to inform appropriate management

    Characteristics and Risk Perceptions of Ghanaians Potentially Exposed to Bat-Borne Zoonoses through Bushmeat.

    Get PDF
    Emerging zoonotic pathogens from wildlife pose increasing public health threats globally. Bats, in particular, host an array of zoonotic pathogens, yet there is little research on how bats and humans interact, how people perceive bats and their accompanying disease risk, or who is most at risk. Eidolon helvum, the largest and most abundant African fruit bat species, is widely hunted and eaten in Ghana and also carries potentially zoonotic pathogens. This combination raises concerns, as hunting and butchering bushmeat are common sources of zoonotic transmission. Through a combination of interviews with 577 Ghanaians across southern Ghana, we identified the characteristics of people involved in the bat-bushmeat trade and we explored their perceptions of risk. Bat hunting, selling and consumption are widely distributed across regional and ethnic lines, with hotspots in certain localities, while butchering is predominantly done by women and active hunters. Interviewees held little belief of disease risk from bats, saw no ecological value in fruit bats and associated the consumption of bats with specific tribes. These data can be used to inform disease and conservation management plans, drawing on social contexts and ensuring that local voices are heard within the larger global effort to study and mitigate outbreaks.This is the final version. It was first published by Springer in EcoHealth at http://link.springer.com/article/10.1007%2Fs10393-014-0977-0
    • …
    corecore