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Abstract

Determining the drivers of aboveground net primary production (ANPP), a key

ecosystem process, is an important goal of ecosystem ecology. However, accu-

rate estimation of ANPP across larger areas remains challenging, especially for

savanna ecosystems that are characterized by large spatiotemporal heterogeneity

in ANPP. Satellite remote sensing methods are frequently used to estimate pro-

ductivity at the landscape scale but generally lack the spatial and temporal reso-

lution to capture the determinants of productivity variation. Here, we

developed and tested methods for estimating herbaceous productivity as an

alternative to labour-intensive repeated biomass clipping and caging of small

plots. We compared measures of three spectral greenness indices, normalized

difference vegetation index derived from Sentinel-2 (NDVIs) and a handheld

radiometer (NDVIg), and green chromatic coordinate derived from digital

repeat cameras (GCC) and tested their relationship to biweekly field-measured

herbaceous ANPP using movable exclosures. We found that a satellite-based

model including average NDVIs and its rate of change (ΔNDVIs) over the

biweekly productivity measurement interval predicted herbaceous ANPP rea-

sonably well (Jackknife R2 = 0.26). However, the predictive accuracy doubled

(Jackknife R2 = 0.52) when including the sum of day to day increases in cam-

era trap-derived vegetation greenness (tGCC). This result can be considered

promising, given the current lack of productivity estimation methods at compa-

rable spatiotemporal resolution. We furthermore found that the fine (daily)

temporal resolution of GCC time series captured fast vegetation responses to

rainfall events that were missed when using a coarser temporal resolution

(>2 days). These findings demonstrate the importance of measuring at a fine

temporal resolution for predicting herbaceous ANPP in savanna ecosystems.

We conclude that camera traps are promising in offering a reliable and cost-

effective method to estimate productivity in savannas and contribute to a better

understanding of ecosystem functioning and its drivers.

Introduction

Aboveground net primary production (ANPP) is consid-

ered a key aspect of ecosystem functioning because of its

defining influence on ecosystem structure and biological

diversity (Brun et al., 2019; Cebrian, 1999; McNaughton

et al., 1989). Determining the causes of spatial and tem-

poral variation in ANPP is, therefore, an important goal

in ecosystem ecology, including the assessment of ecosys-

tem services (Reid et al., 2006). The accurate

ª 2022 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London.
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measurement and estimation of ANPP at spatial and tem-

poral resolutions that capture the relevant determinants

of productivity in natural ecosystems remain challenging,

especially in tropical savanna ecosystems due to their

inherent high level of intra-annual rainfall variability,

both in the amount, intensity and intermittency. Short-

term changes in ANPP in response to stochastic rainfall

events are likely to be missed because cloud cover during

the rainy season can prevent optical satellite sensors from

acquiring cloud-free imagery, thereby limiting the assess-

ment of vegetation productivity at critical moments (Pet-

torelli et al., 2005). In addition, different ANPP

estimation methods can produce inconsistent results due

to ignoring the effects of grazing (extra production may

rapidly be removed), turnover rates and decomposition in

ANPP estimates (Ruppert & Linstädter, 2014; Scurlock

et al., 2002). To better understand the functioning of

savanna ecosystems, it is crucial to improve and develop

methods for efficient estimation of ANPP at relevant

scales while using ‘best practice’ methods as benchmarks

to evaluate these estimation methods (Ruppert & Linstäd-

ter, 2014).

Traditionally, ANPP is estimated in the field using

either clipping of peak standing biomass at the end of the

growing season (so-called ‘peak methods’) or repeated

clipping throughout the season (‘incremental methods’)

(Byrne et al., 2011; Mbow et al., 2013). The majority of

field-based herbaceous ANPP estimation methods rely on

the less labour-intensive peak methods, but these are

inadequate in savannas as these are fast turnover ecosys-

tems with high ANPP to biomass ratios (Sala & Aus-

tin, 2000). Grazers can also affect productivity in multiple

ways, for example by inducing compensatory growth in

response to defoliation (Frank & McNaughton, 1993) and

by reducing leaf area, reducing photosynthetic capacity.

Therefore, the use of incremental methods in combina-

tion with moveable exclosures is preferred in natural

savanna ecosystems (McNaughton et al., 1996). Despite

the advantage of relatively accurate ANPP measurements

that are possible through repeated caging and clipping,

the high labour intensity limits its applicability. Therefore,

to obtain accurate ANPP estimates for larger areas, such

labour-intensive best-practice methods need to be cali-

brated to more rapid-assessment methods.

The increasing availability of multispectral satellite ima-

gery makes satellite-derived vegetation indices (VI’s), such

as the Normalized Difference Vegetation Index (NDVI), a

good candidate for such calibrations. Indeed, many eco-

logical studies use NDVI as a proxy for vegetation pro-

ductivity and phenology (Bonenfant et al., 2009; Paruelo

et al., 1997; Pettorelli et al., 2011). At the basis of this

relationship is the capability of NDVI to capture the con-

trast between strong absorption in the visible wavelengths

and high reflectance in the near-infrared wavelengths,

which characterizes photosynthetically active vegetation

(Tucker, 1979). Important limitations of NDVI include

its sensitivity to optical properties of the soil background

(Huete et al., 1985), the quick saturation with increasing

leaf area index (Baret & Guyot, 1991) and reduced tem-

poral observations by satellites due to cloudiness (Pet-

torelli et al., 2005). Satellite-derived time series of NDVI

with relatively short intervals between consecutive obser-

vations were until recently limited to spatial resolutions

of c. 250–1000 m. One important example is the Moder-

ate Resolution Imaging Spectroradiometer (MODIS) that

flies on the Terra and Aqua satellites. In recent years, the

revisit frequency has increased for freely available satellite

data at finer spatial resolutions. For example, since the

launch of the second Sentinel-2 satellite in March 2017,

the mission now offers global coverage at 10 m resolution

every 5 days. However, due to cloud cover, particularly

an issue during rainy seasons (the main growing season),

no frequent observations of the land surface can be made

everywhere, thus limiting its potential to capture short-

term vegetation responses to rain events. This is relevant

as vegetation responses to rain occur rapidly in semi-arid

ecosystems, especially for grasses (Williams et al., 1998;

Xu et al., 2015). Methods that are only based on satellite-

derived NDVI may therefore not fully capture temporal

patterns of primary production, despite their excellent

spatial coverage.

The use of digital repeat photography or ‘near-surface

remote sensing’ in the study of phenology is gaining

popularity across various ecosystems (Alberton

et al., 2017; Richardson, 2019; Toomey et al., 2015; Vriel-

ing et al., 2018). The resulting image series, obtained

from digital cameras installed at a fixed position, allow

for the derivation of greenness indicators such as the

green chromatic coordinate (GCC), which expresses green

reflection as a fraction of the total reflection in the visible

spectrum for vegetation within the camera field-of-view

(Richardson et al., 2013; Sonnentag et al., 2012). Given

that the cameras can be set to take multiple images per

day, they provide a method that is relatively insensitive to

cloud cover. Digital repeat photography, possible with

weather-proof, relatively cheap camera traps, can thus

potentially capture fast vegetation responses to rain

events. Unlike NDVI, absolute measures of GCC are less

suitable for the estimation of biomass as the typical (and

most practical in areas with wildlife due to the risk of

damage) oblique mode of camera installation means that

the GCC signal is affected by non-photosynthetic parts,

such as flowers and seeds (Vrieling et al., 2018).

Although digital repeat photography has proven its

usefulness for phenology studies (Vrieling et al., 2018), to

the best of our knowledge, no attempts exist to use time

584 ª 2022 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London.
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series of field photographs for estimating high-resolution

ANPP. In this study, we compared temporal and inte-

grated measures of two VI’s (NDVI and GCC) derived

from remote and near-surface sensing techniques and

investigated their relationship with field-measured herba-

ceous ANPP using movable exclosures. Specifically, we

examined the capacity of different combinations of sens-

ing techniques, VI measures and a field-measured proxy

for aboveground standing biomass to predict short-term

(14 days) herbaceous ANPP. Last, we explored the spa-

tiotemporal responsiveness of GCC to rainfall events and

assessed how the predictive capacity of VI measures and

field-measured biomass for ANPP was affected by a

reduction in both temporal and spatial resolution.

Materials and Methods

Study area and design

The study was conducted around Seronera in the centre

of the Serengeti National Park (SNP), North-western Tan-

zania (Fig. 1). The SNP is part of the greater Serengeti-

Mara ecosystem, one of the largest protected tropical

savanna ecosystems globally and home to abundant and

diverse wildlife (Sinclair et al., 2008). The mean annual

precipitation for Seronera is around 800 mm (Pel-

lew, 1983). Rainfall is highly stochastic, both in intensity

and intermittency, but annual rainfall generally peaks

during the short rain season in December–January and

during the long rain season in March–May. Seronera is

situated at the fringe of the Serengeti plains and is charac-

terized by gently rolling pediplains on granitic rocks

(Jager, 1982). The vegetation is classified as Acacia wood-

lands, which is characterized by a continuous C4-grass

dominated herbaceous layer (principal grass species

include Themeda triandra, Digitaria macroblephara and

Panicum coloratum) intermixed with a discontinuous

layer of (predominantly Vachellia tortilis and V. robusta)

trees.

We set up cameras in the vicinity of the research sta-

tion in Seronera over two study periods (April–June 2016

and April–September 2018) (Fig. 1, see Table S1 for coor-

dinates). Taking advantage of the 5-day temporal resolu-

tion of the Sentinel-2 multispectral instrument data since

2017, we set up a network of eight cameras (A–H) in

April 2018. For these sites, we evaluated how both

camera-derived GCC and Sentinel-2 derived NDVI

(NDVIs) related to herbaceous ANPP. However, we had

initiated the study in 2016 with two cameras (I–J), for

which we solely evaluated the relationship between

camera-derived GCC and herbaceous ANPP. We also

measured NDVI on the ground (NDVIg) with a handheld

radiometer every 4 days to compare the predictive capaci-

ties of GCC and NDVI without being dependent on

Figure 1. Study area and location of sites (A–J) across a topographical gradient. The red colours in the figure on the right reflect a high catena

position, while the light green colours reflect a low catenae position. Landform classes are determined using a modified (De Reu et al., 2013),

multiscale (600 and 2400 m neighbourhood sizes) topographic position index algorithm first described by Weiss (2001), based on a digital

elevation model (DEM), derived from the global C-band shuttle radar topographic mission (SRTM) with a 30 m resolution.

ª 2022 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London. 585
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cloud-free images. The three VI’s (GCC, NDVIs and

NDVIg) were thus simultaneously measured through time

for each site in one multi-scaled plot (Fig. 2A). We opted

for NDVI over alternative VI’s because of its common

use and utility for a wide range of applications (Pettorelli

et al., 2005). Other commonly used VI’s like the

Enhanced Vegetation Index (EVI) may be a good alterna-

tive in higher biomass areas (due to its compensation for

the effects of NDVI saturation) but deemed unnecessary

in our study sites because NDVI has a good range in low

biomass areas and in such conditions does not suffer

from saturation (Huete et al., 2002). Similarly, we did not

correct for the effect of optical properties of the soil back-

ground because fractional vegetation cover is high in our

study area.

At the largest scale, NDVIs values were calculated for

the pixel (10 m resolution) covering the centre of a

30 × 30 m plot (NDVIs plot). The NDVIs plot is larger

than the resolution to account for the reported geometric

inaccuracy of the Sentinel-2 satellites (within 11 m for

95.5% of the tiles; Claverie et al., 2018). To exclude NDVI

signals from woody components, we selected sites without

trees, shrubs and saplings within and in the close vicinity

of the NDVIs plot. The ~5 × 10 m plot over which we

calculated GCC values (GCC plot) was nested within the

NDVIs plot (Fig. 2A). NDVIg and aboveground standing

biomass (from now on biomass) were measured in 32

subplots of 1 m2 covering both the NDVIs plot (N = 25)

and GCC plot (N = 9). Within-site variability was lower

than between-site variability for measured VI’s and bio-

mass (Fig. S1).

While the most important green-up phase started at

this location in March, we excluded this period because

long periods of cloud cover prevented optical satellite

sensors from acquiring cloud-free imagery, which would

make it impossible to compare the performance of digital

repeat photography to satellite-based methods. Spatial

variation in biomass was maximized by placing cameras

along the catena sequence (sometimes described as hydro-

logically linked hillslopes) (Fig. 1), which is associated

with strong soil differentiation and thus drives a major

local gradient in resource availability (Borden et al., 2020;

Khomo et al., 2011). Due to increased moisture availabil-

ity, biomass can accumulate faster at lower catenae posi-

tions throughout the growing season, which introduces

between-site variation in biomass during our study per-

iod, independent of phenological state (Fig. S1).

Herbaceous aboveground net primary
production

Herbaceous ANPP was measured using moveable exclo-

sures following the protocol described by McNaughton

et al. (1996). This method is considered the ‘benchmark’

in this study, and the productivity measurements made

through this method thus served as the response variable.

The exclosures were set up just outside the camera’s view

in an area representative of the region of interest (ROI).

Spatial variability in species composition, biomass and

NDVI is limited at this scale (Fig. S1). At the onset of

each interval, we clipped an area of 50 x 50 cm outside of

the exclosure (t0), with comparable biomass and species

Figure 2. (A) Experimental design of the multi-scaled plot for measurement of VI’s. The blue polygon indicates the ROI for extracting the GCC

time series using a digital camera (camera is indicated by the black rectangular). Sentinel-2 derived NDVI (NDVIs) was extracted for the pixel

(10 × 10 m resolution) covering the UTM coordinates of the red dot at the centre of the red polygon (both in left figure). The red polygon

indicates the area over which NDVI may have been calculated (due to geometric inaccuracy), and the grey area denotes a buffer-zone to exclude

the influence of trees and disturbance by people and vehicles. Within both polygons, we measured NDVI in the field with a radiometer (NDVIg)

and aboveground standing biomass with a disc pasture meter at every subplot (black dots). (B) Sample photo of site (A), showing the field of

view of the plot used for GCC extraction (blue polygon) and a partial field-of-view of the 30 x 30 m plot for NDVIs extraction. ROI, region of

interest; GCC, green chromatic coordinate; NDVI, normalized difference vegetation index.

586 ª 2022 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London.
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composition to that inside the exclosure. After 14 days, a

50 × 50 cm plot was clipped inside the exclosure (t1).

We set the measurement interval at 14 days to observe

within-season ANPP variation while limiting the effect of

clipping errors on biomass increment estimates. In one

case (site I), we clipped T1 after 18 days due to practical

issues. Clipped biomass samples were oven-dried at the

Seronera research station. Average daily herbaceous ANPP

was then calculated for each site and interval as:

ANPP ¼ Biomasst1−Biomasst0
interval daysð Þ : (1)

Field camera time series

We used weather-proof Bushnell Trophy Cam Essential

(model 119736) camera traps to collect 3-megapixel RGB

photographs in JPG format every 15 min between 9.30 and

15:30 East Africa Time. Cameras were attached to trees,

3 m above ground level, to maximize herbaceous canopy

view and prevent damage by rubbing large animals (buf-

falo, elephant). Tree branches that obstructed the camera

view were trimmed. The cameras faced either north or

south to minimize overexposure as a result of direct

incoming sunlight. The distance between the camera and

the nearest edge of the GCC plot was 10 m, resulting in a

vertical downward tilt of ~17° (Fig. 2B). The GCC plot’s

depth was limited to 10 m because the oblique mode of

camera installation decreases the herbaceous canopy view

with distance and increases the contribution of non-

photosynthetic elements such as flowers and seeds to GCC

(Vrieling et al., 2018) (Fig. 2B). All cameras functioned as

expected throughout the wet season, except for camera A,

which was not operational between 26 June 2018 and 7

July 2018 due to an unknown technical issue. Camera G

was not operational due to technical failure from July 2018

onwards, and a replacement was not available.

Data from camera imagery were extracted and processed

using the R package phenopix (Filippa et al., 2016). Before

processing, the images were manually filtered for wildlife

presence disrupting the view on the vegetation, lens humid-

ity caused by rainfall and over- and underexposure. While

the majority of over and underexposed images were filtered

out by only including images between the set times of 9.30–
15:30 EAT, we additionally limited the effect of brightness

on GCC by only including images with an average digital

number (DN) between 80 and 220 (Sonnentag et al., 2012).

We delineated the pre-defined GCC plot as the ROI in the

image (blue polygon, Fig. 2). For each image, the DN of

each colour layer of the RGB image (green, red and blue

light in the visible spectrum: 400–700 nm) within the ROI

was extracted to yield a DN triplet (RDN, GDN, BDN), from

which GCC can be calculated as follows:

GCC ¼ GDN

RDN þ GDN þ BDN
: (2)

GCC values were averaged for each ROI. To reduce

noise caused by between-day variation in scene illumina-

tion, Sonnentag et al. (2012) suggest calculating the 90th

percentile of all averaged GCC values (GCC90) within

non-overlapping 3-day windows. In this study, we tested

both unsmoothed daily GCC90 values and smoothed

daily GCC90 values using a moving (overlapping) 3-day

window to retain high temporal resolution. While moving

windows may be adequate for estimating phenologically

relevant parameters such as the start or end of the season

(SOS, EOS), vegetation responses to rainfall events occur

at finer time scales and require temporally detailed GCC

time series.

Absolute measures of GCC were not comparable in

space due to differences in observation geometry and cam-

era performance. As an alternative, we summed the num-

ber of days on which GCC90 increased for each site and

productivity measurement interval because vegetation

greenness and productivity were expected to vary on a

daily basis due to changes in moisture availability caused

by rainfall events. We calculated background variation in

GCC90 during rainfall-free periods for each site so that day

to day green-up is only counted when the increase is higher

than the measured, site-specific standard deviation. Addi-

tionally, we considered time lags because biomass produc-

tivity was expected to lag behind greenness changes

(Huxman et al., 2004). The used GCC measure (tGCC) to

predict herbaceous ANPP was then calculated as follows:

tGCCij ¼ ∑
14−l

t¼1−l

1, if GCC90tþ1−GCC90t > SDGCC90i

0, otherwise

�
,

(3)

where tGCCij is the GCC measure at the ith site and the

jth measurement interval, GCCt is the day within the mea-

surement interval (which ranges from t1 to t14) and l is

the number of ‘lag’ days ranging between zero and 3 days.

For each tGCCij, we thus calculated four variables based

on the number of lag days. We did not consider lags

beyond 3 days because an increased lag period also

increases the time that herbivores may eat away material

from the area used for the upcoming productivity mea-

surements through caging.

Sentinel-2 and near-surface derived NDVI
time series

Available satellite imagery between April and September

2018 was downloaded from the Copernicus Open Access

Hub (https://scihub.copernicus.eu/). The images are

ª 2022 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London. 587
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acquired by two identical Sentinel-2 satellites, 2A and 2B,

which each have a 10-day repeat cycle, and together pro-

vide a temporal resolution of 5 days. Before retrieving

surface reflectance, we applied an atmospheric correction

to all images using the Sen2cor toolbox (version 2.5.5)

provided by the European Space Agency (Louis

et al., 2016). Additionally, we used Sen2Cor’s scene classi-

fication layer to discard pixel-level observations that were

identified as clouds, cloud shadows and thin cirrus. From

the 13 acquired spectral bands, we used band 4 (R:

0.650–0.680 nm) and 8 (NIR: 0.785–0.900 nm) at 10-m

resolution to calculate NDVIs as follows (Tucker, 1979):

NDVIs ¼ NIR−R
NIRþ R

: (4)

NDVIg was measured using a pair of two-channel (R:

636–673 nm, NIR: 851–879 nm) radiometric sensors

(Model 1850, Skye Instruments LTD, Powys, UK). The

upward-pointing sensor measures the incident solar radia-

tion, while the second sensor measures upward reflectance

from the herbaceous canopy. NDVIg is obtained from

measured incoming and reflected radiation as follows:

NDVIg ¼
NIRρ

NIRσ

� �
− Rρ

Rσ

� �
NIRρ

NIRσ

� �
þ Rρ

Rσ

� � , (5)

where NIR⍴ and RED⍴ represent reflected quantum flux

and NIRσ and Rσ represent incident quantum flux. The

radiometric sensors were mounted on top of a handheld

pole at 1.5 m from the ground, which corresponds to a

measured ground surface of 0.35 m2. Every 4 days, two

measurements were taken for each subplot inside the

30 × 30 m grid (N = 25) and 5 × 10 m grid (N = 9)

(Fig. 2).

We calculated average NDVIs and NDVIg over the

productivity measurement interval of 14 days +/− the

lag days through linear interpolation (using R package

Desctools, Signorell et al., 2016). We also considered the

rate of change of both NDVI time series as they relate

to phenological dynamics and phenophase (Fig. 3). Rates

of change in NDVIs (ΔNDVIs) and NDVIg (ΔNDVIg)
were calculated by subtracting the NDVI at the onset

from the NDVI at the end of each productivity measure-

ment. Both the start and end NDVI measurements were

approximated by linear interpolation because NDVI

observations do not necessarily match the onset and end

of the productivity measurement interval. Positive values

imply an increase in green biomass over the interval,

while negative values signify senescence. Similar to

tGCC, we considered different time lags for NDVIs and

NDVIg.

Aboveground standing biomass

We approximated biomass at the onset of each productiv-

ity measurement using a calibrated disc-pasture meter

across a 30 × 30 m grid, and a 10 × 5 m grid at each site,

matching the spatial resolution of Sentinel-2 derived

Figure 3. Overview of the expected temporal behaviour of considered predictor variables over one growing season, beginning at the SOS to the

EOS. At0 – At1 and Bt0 – Bt1 represent two different productivity measurement intervals during two distinctive phenophases. The rate of change

in NDVI (ΔNDVI) and disc-measured biomass are different between these two stages as NDVI generally increases during the weeks following the

SOS (biomass accumulation), while NDVI decreases due to leaf senescence during the second stage of the growing season. The similar NDVI

values during both A and B explains why average NDVI alone may not be informative on phenophase as both the inclusion of bare ground during

early phases and leaf senescence during later phases reduces NDVI. The number of increases in GCC90 is a temporally independent predictor

variable over the season. The colour gradient visualizes the expected effect of each metric (VI measures and disc-measured biomass) at different

values on herbaceous ANPP without considering phenophase. SOS, start of the season; EOS, end of season; NDVI, normalized difference

vegetation index; ANPP, aboveground net primary production.

588 ª 2022 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London.

Cameras Enable Estimation of Herbaceous ANPP I. K. de Jonge et al.

 20563485, 2022, 5, D
ow

nloaded from
 https://zslpublications.onlinelibrary.w

iley.com
/doi/10.1002/rse2.263 by U

niversity O
f G

roningen, W
iley O

nline L
ibrary on [08/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



NDVI and field camera derived GCC respectively. Disc-

pasture meter measurements were averaged for each site

before using a calibration equation (R2 = 0.83) specific to

the Serengeti to convert the height (cm) of the disc into

herbaceous biomass (g m−2) (unpublished data Smith

et al., 2020).

Rainfall

We used the 0.05° gridded rainfall dataset from the Cli-

mate Hazards Group InfraRed Precipitation with Station

data (CHIRPS) (Funk et al., 2015), downloaded from

http://chg.geog.ucsb.edu/data/chirps/, to assess the respon-

siveness of GCC to rain events. The CHIRPS rainfall

product shows consistently high performance during the

entire year and for different rainfall regimes in East Africa

(Kimani et al., 2017). Additionally, and recognizing that

CHIRPS estimates may miss certain rain events, we also

recorded rain events that could be inferred from visual

examination of the camera trap images.

Data analysis

The tested predictors of herbaceous ANPP consisted of

averages and rates of change in NDVIs and NDVIg, a

temporal measure of GCC and disc-measured biomass

(see Table 1 for an overview). Furthermore, quadratic

terms for biomass, NDVIs and NDVIg were considered

because herbaceous ANPP may be the highest at interme-

diate values of these predictors given that higher and tal-

ler biomass has increased respiratory maintenance costs

due to the relatively large amounts of stem tissue and

self-shading (Coughenour et al., 1984) (Fig. 3). General-

ized linear models (GLM) were fit using base R and used

to predict herbaceous ANPP, with quasi-Poisson distribu-

tions to correct for overdispersion (Crawley, 2012). We

computed the quasi-Akaike Information Criterion (quasi-

AIC) using the bbmle package (Bolker, 2014) for model

comparison because regular AIC cannot be calculated

from quasi-distributions. The least-complex model was

selected when AIC was lower than 2 (Burnham and

Anderson 2004).

We assessed the importance of both temporal and spa-

tial resolution through a (stepwise) reduction of resolu-

tion in each predictor. For GCC, we reduced temporal

resolution from 1 to 2 days by skipping 1 day in the data-

set. This yielded two separate datasets where one GCC

time series covers all the ‘odd’ days (starting at day 1 of

the study), and the second dataset covers all the even days

(starting at day 2 of the study). An increase in GCC was

then calculated in a similar way as in Equation 3. We

then extended the reduction in resolution up to 6 days

and, as for the 2-day resolution, retained all possible x-

day combinations that fitted within the time frame of

14 days. Spatial resolution was reduced from the GCC

plot level (10 × 5 m, Fig. 2) to the landscape level

(5 × 5 km, Fig. 1) by using the tGCC of one site (A-H)

and using that value for all the other sites. This yielded

eight different datasets, where the tGCC values (one for

every productivity measurement interval) of one particu-

lar site were used to predict the productivity in the other

sites. For biomass, temporal resolution was reduced step-

wise from 2 weeks (each productivity measurement inter-

val) to 10 weeks with steps of 2 weeks. The temporal

resolution of NDVIs was reduced stepwise from 5 to

30 days with steps of 5 days. We note that a 5-day resolu-

tion is not always attained for NDVIs due to cloud cover;

Table 1. Description of predictor variables and their expected effect

on herbaceous ANPP.

Predictor Description Predicted effect

tGCCx The number of days with

increases in GCC90 (>
site-specific SD) within

the productivity

measurement interval,

with a lag of × days

Higher productivity with

more days

NDVIgx Ground-based measure of

NDVI averaged over the

productivity

measurement interval,

with a lag of × days

Higher productivity with

higher NDVI, which

saturates or declines at

the highest levels

ΔNDVIg Ground-based NDVI at the

end of each productivity

measurement minus the

NDVI at the onset of

each productivity

measurement

Higher productivity with

small positive values

and low productivity

with negative values

NDVIsx Sentinel-2 derived measure

of NDVI averaged over

the productivity

measurement interval,

with a lag of × days

Higher productivity with

higher NDVI, which

saturates or declines at

the highest levels

ΔNDVIs Sentinel-2 derived NDVI at

the end of each

productivity

measurement minus the

NDVI at the onset of

each productivity

measurement

Higher productivity with

small positive values

and low productivity

with negative values

Biomass Field approximated

aboveground standing

biomass using a disc

pasture meter at the

onset of each

productivity

measurement interval

Increase in productivity

with higher biomass,

which saturates or

declines at the highest

levels

ANPP, aboveground net primary production; NDVI, normalized differ-

ence vegetation index.
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consequently the actual temporal resolution of NDVIs

can therefore be equal or greater (i.e. more days) than the

assigned value in the stepwise reduction.

Finally, the dataset used for exploring the temporal

responsiveness of GCC to rainfall consisted of the number

of sites that recorded an increase in GCC (green-up) for

each day since the last rainfall event compared to the day

before the rain event occurred, for 10 separate rainfall

events during the 2018 study period. To establish the

effect of time since a rain event on GCC increase, we only

considered rainfall events followed by at least 1 day with-

out rain. We fitted generalized linear mixed models

(GLMMs) assuming a binomial error distribution with a

logit link function to model the number of sites that

recorded green-up (yes or no), weighted by the total

number of sites with an operational camera during the

event using the lme4 package (Bates et al., 2007). Because

rain events vary in magnitude (which influences the

chance that cameras may record a green-up), ‘rain event

ID’ was included as a random effect as we were primarily

interested in the effect of time in this analysis.

For the models predicting herbaceous ANPP, model fit

was assessed using D2, the proportion of deviance

explained by each model relative to the null model

(intercept-only model). Model consistency and predictive

accuracy were evaluated using a jackknife evaluation

procedure (Miller, 1974). In this procedure, one single

data point (one productivity measurement at one loca-

tion) is taken out of the dataset at each iteration (the

number of iterations is equal to the number of data

points) and predicted by a model based on the remaining

data points. We report the R2 of the regression between

observed versus jackknife predicted values as a measure of

the models’ consistency. All analyses were performed in

the statistical environment R version (3.4.1) (R Develop-

ment Core Team 2017).

Results

Herbaceous ANPP

Herbaceous ANPP and field-measured biomass was vari-

able between both sites and productivity measurement

intervals (Table 2, Table S2). Taken over the entire study

period, herbaceous ANPP was on average 4.41 g dry

weight m−2 day−1 (SD = 5.02). Aboveground standing bio-

mass was on average 261.76 g dry weight m2 (SD =
107.07). Mean biomass was considerably lower during

the 6th measurement interval of the 2018 study period

because all sites burned in July 2018 (Table 2, Table S2).

Herbaceous ANPP was best predicted by a combination

of tGCC, NDVIs and a quadratic term for NDVIs (ANO-

DEV, D2 = 0.48, adj. R2 = 0.63) (Table 3, Fig. 4A). This

result implies that both short- and long-term dynamics,

as well as an indicator for biomass, are important predic-

tors. For instance, the model predicts low herbaceous

ANPP for the first 2 weeks of September 2018 compared

to May 2018 (Fig. 4E and B) due to low biomass (and

hence low NDVIs values) over majority of the landscape

as a result of burning in July. When only ground-based

methods were considered, herbaceous ANPP was pre-

dicted best by tGCC combined with a quadratic term for

disc-measured biomass (ANODEV; D2 = 0.43, adj.

R2 = 0.55, Fig. 4) (Table 3). Both of these models per-

formed better than the best satellite-based model, where

NDVIs in combination with a quadratic term for NDVIs

explained 34% of deviance (ANODEV; adj. R2 = 0.40).

The jackknife evaluation procedure showed that the esti-

mates of the best ground-based method (tGCC + Bio-

mass) and best overall model (tGCC + NDVIs) were

predictive of observed values (Table 3). The intercepts

and slopes of the regression models between observed and

jackknife predicted values were not different from 0 and 1

respectively (P > 0.05, Fig. S2).

We used tGCC measures calculated from unsmoothed

GCC90 time series for each model because models using

tGCC calculated from smoothed time series (using an

overlapping 3-day window) had low quasi AIC scores and

were poor predictors of herbaceous ANPP (Table S1).

Table 2. Mean aboveground standing biomass and herbaceous ANPP

in the study sites for each productivity measurement interval.

Sites Interval t1 Biomass (g m−2)

ANPP

(g m−2 day−1)

A-H 1 2018-04-

30

284.78 � 61.32 4.39 � 3.74

2 2018-05-

14

282.03 � 53.35 9.93 � 8.20

3 2018-05-

28

316.38 � 73.33 4.33 � 4.35

4 2018-06-

11

297.67 � 76.54 4.12 � 3.71

5 2018-06-

25

275.21 � 60.88 3.26 � 3.79

6 2018-09-

02

75.07 � 10.98 1.54 � 1.29

I-J 1 2016-04-

24

226.49 � 163.49 5.69 � 1.24

2 2016-05-

12

291.44 � 220.37 0.21 � 0.29

3 2016-05-

26

331.75 � 260.89 0.74 � 1.04

For both biomass and ANPP, we report the mean � standard devia-

tion. Biomass measurements were performed at the start of each

measurement interval (t1) and each ANPP measurement was per-

formed over an interval of 14 days. ANPP, aboveground net primary

production.
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Considering single VI’s, we found that tGCC explained

more deviation (D2 = 21%) than NDVIg (D2 = 18%)

and NDVIs (D2 = 17%). Lastly, there was no consistent

effect of the used lag across VI measures and different

lags had little effect on the explained deviance, as indi-

cated by low quasi AIC between models with different

lags (Tables S3–S7). This implies that the potential effect

of the lag in productivity after greenness changes may be

very limited at the temporal scale of 3 days or that the

effect is variable over time and/or between sites.

Spatiotemporal resolution of vegetation
indices

The temporal profile of camera-derived GCC90 showed

strong day to day fluctuation (Fig. 5). The profiles of

NDVIg and NDVIs showed fewer fluctuations due to

lower temporal resolution, where in some cases, the

NDVIs time series was interrupted by observation gaps of

up to 15 days. The importance of temporal resolution in

relation to the predictive capacity of tGCC is demon-

strated by a substantial decrease in the minimum adjusted

R2 (observed vs. estimated values) of both the best overall

model (tGCC in combination with NDVIs and NDVIs)

and the best field-based model (tGCC in combination

with disc-measured biomass) with reduced temporal

resolution (Fig. 6A). Similarly, a reduction in spatial reso-

lution (from the GCC plot level to the landscape level)

decreased the mean adj. R2 of both models in a compara-

ble way to the reduction in temporal resolution (Fig. 6B).

The predictive capacity of models with a lower temporal

resolution for NDVIs increased slightly at a resolution of

≥10 days (mean adj. R2 of 0.65) before it steadily

decreased (Fig. 6C). The reduction in spatial resolution

for NDVIs and disc-measured biomass showed slightly

smaller reductions in mean adj. R2 compared to tGCC

(Fig. 6D and F). Finally, temporal resolution was least

important for disc-measured biomass, with only a mini-

mal decrease in mean adj. R2 (Fig. 6E).

Responsiveness of GCC to rain events

The proportion of sites that recorded a green-up in GCC

was the highest on the same day as the rain event and

decreased with each following day (GLMM, z = −5.893,
P < 0.001) (Fig. 7). The proportions dropped steeply after

the first day, except for the heavy rainfall event that

occurred on the 19th of June 2018, which resulted in a

green-up that was still detectable in three out of seven

sites until the fifth day after the rain event (Fig. 7). GCC

did not increase in response to each estimated rain event

on every site.

Table 3. Analysis of deviance table for generalized linear models with quasi-Poisson errors considering measures of three vegetation indices

(tGCC, NDVIg, NDVIs) and field-based measurements of biomass (Biomass).

VI Predictor d.f. Res. deviance Prop. deviance Resid d.f. F P Adj R21 jk Adj. R21

tGCC Null 265.95 49

tGCC tGCC0 1 211.3 0.205 48 13.28 <0.001 0.17 0.07

tGCC + Biomass tGCC3 1 226.67 0.148 48 12.81 <0.001 0.46

Biomass 1 176.74 0.188 47 16.28 <0.001 0.55

Biomass2 1 152.74 0.090 46 7.830 0.007

NDVI NDVIg0 Null 244.81 44

NDVIg 1 200.4 0.181 43 9.883 0.003 0.18 0.09

NDVIs3 NDVIs 1 204.18 0.166 43 11.220 0.002 0.26

ΔNDVIs 1 202.85 0.005 42 0.368 0.548 0.40

ΔNDVIs2 1 161.85 0.167 41 11.322 0.002

tGCC + NDVI NDVIg3 Null 238.64 43

NDVIg 1 183.92 0.230 42 13.849 <0.001 0.45 0.28

tGCC3 1 164.12 0.08 41 5.009 0.031

NDVIs2 ΔNDVIs 1 238.43 <0.001 42 0.074 0.786 0.63 0.52

ΔNDVIs2 1 207.9 0.128 41 10.813 0.002

tGCC1 1 136.49 0.299 40 25.285 <0.001
NDVIs 1 123.2 0.057 39 4.705 0.036

We present multiple models for tGCC (based on lowest quasi-AIC scores); a model without other predictors, and models in combination with bio-

mass, NDVIg (field-based methods) and NDVIs (satellite-based method). The adjusted R2 of the regression between observed versus predicted val-

ues (Adj. R2) and between observed versus jackknife predicted values (jk Adj. R2) is presented for each model. The proportion deviance (prop.

deviance in the table) is the proportional decrease in residual deviance relative to the null model. The ordering of predictors in the model is based

on significance (P-value) to demonstrate the added importance (in terms of explained deviance) for each predictor.
1

The reported adjusted R2 is the degree to which the model predictions are correlated to observations.
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Discussion

We provided the first analysis on the capacity of camera-

derived GCC to improve estimates of herbaceous ANPP

relative to satellite- or ground-based NDVI measures. The

results show that day-to-day increases in GCC90 are

related to CHIRPS-derived rainfall events (Fig. 7) and

that the sum of these daily GCC increases (tGCC)

enhances the predictive capacity of both a field-based

model and a remote-sensing approach (Table 3). Both

models provide new herbaceous ANPP estimation meth-

ods, with reported predictive accuracy of R2 = 0.44 (field-

based method) and R2 = 0.52 (remote-sensing approach).

It should be noted that these R2 values can be considered

as high, since part of the unexplained variation results

from different types of sampling errors, including clipping

Figure 4. (A) Predicted herbaceous ANPP (grams dry weight m-2 day-1) (z-axis) based upon the best model, explaining 48% of total deviance

(Table 2). The model includes the number of days with measurable increases in GCC90 (tGCC, y-axis), a quadratic term for ΔNDVIs (x-axis) and a

time-integrated measure of NDVIs. The effect of NDVIs is here visualized by showing the predictive behaviour of the other predictors in the model

at low NDVIs (<0.500, left panel) and high NDVIs (>0.500, right panel). (B–G) Maps of the study area showing the predicted ANPP and

interpolated tGCC values (obtained through ordinary kriging) for two productivity measurement intervals (T1 and T6) according to the best model

combining tGCC and NDVIs (B and E) and the best satellite-based model (C and F). Note that the colour scale is different from the scale used in

(A) to aid the visualization of spatial differences in productivity. ANPP, aboveground net primary production.

Figure 5. Time series of field camera derived GCC90 (primary y-axis), satellite-derived NDVI (NDVIs) and ground-based NDVI (NDVIg) (secondary

y-axis) during the second study period (2018). Each panel is related to one site (A–H). CHIRPS-estimated precipitation events are represented as a

rug (blue vertical lines) at the bottom of each panel with a distinction between small (5 mm). Arrows indicate the occurrence of a fire event. The

grey shadings represent 2-week intervals. NDVI, normalized difference vegetation index; CHIRPS, Climate Hazards Group InfraRed Precipitation

with Station data.
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errors (e.g. judgement on the boundary of the quadrat

and clipping heights between herbaceous species) (Bon-

ham, 2013) and errors resulting from variability of bio-

mass inside GCC plots (Fig. S1) (McNaughton

et al., 1996).

The benefit of using camera-derived GCC in predicting

productivity lies in the increased temporal resolution that

enables cameras to detect rapid changes in vegetation

greenness. While these increases could be caused by mea-

surement errors due to variable incoming radiation

between days, we are confident that the contribution of

these errors has remained limited because we have both

used a threshold (accounting for site-specific background

variation) and applied the GCC90 calculation. The 90th

percentile has been shown to effectively suppress variable

scene illumination effects (Sonnentag et al., 2012). The

amplitude of daily fluctuations was variable between sites

(Fig. 5), which may reflect vegetation responses in abso-

lute ways and be informative of production. However, it

may also be driven by site-specific conditions such as

Figure 6. The effect of temporal and spatial resolution of tGCC (A and B), NDVIs (C and D) and disc-measured aboveground standing biomass (E

and F) on the mean predictive capacity (given by the adjusted R2) of the best overall model (tGCC in combination with NDVIs and ΔNDVIs) and
the best field-based model (tGCC in combination with disc-measured biomass). The resolution is reduced for one predictor variable at the time.

The other predictors in the model are kept constant at the highest possible resolution.
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vegetation biomass, plant species composition, herbivore

pressure and camera performance. For example as herbi-

vores are generally attracted to short-statured lawns

(Hempson et al., 2015; McNaughton et al., 1997), grazers

may exhaust green vegetation quicker in low biomass sites

compared to high biomass sites and thereby limit measur-

able changes in GCC more in the former. Another possi-

bility is that moisture-driven green-up is more easily

observed in high biomass sites as more leaf material is

present to respond to increased moisture availability. In

this study, we accounted for site-specific background

noise (by only counting a green-up when the increase in

GCC90 surpassed the standard deviation in GCC90), but

further investigation may be needed to understand the

contribution of biomass on GCC time series behaviour.

Finally, the inclusion of forbs, which have different life

cycles and spectral properties than grasses (Mbow

et al., 2013), could change the effect of rainfall on tGCC.

In this light, caution is warranted when extrapolating

tGCC over a landscape from point measurements (camera

locations) (Fig. 4D and G) when the study area includes

different grassland types.

The study period mainly covered the reproductive and

senescence phase of herbaceous vegetation. While we find

strong relationships between (combinations of) measures

of VI’s and herbaceous ANPP, strategies on the allocation

of resources can vary between phenophases (Gu

et al., 2003). Generally, the onset of flowering is associ-

ated with declines in nutrient uptake, which may make

grasses relatively more water- than nutrient-limited

towards the end of the growing season (Veresoglou & Fit-

ter, 1984). A stronger link between rainfall and produc-

tion during later phenophases may explain why tGCC is a

good predictor of ANPP in our study. In the tropics,

however, we expect the effect of phenophase to be less

important as tropical savanna grasses are known to use

available water as quickly as possible (Xu et al., 2015),

which is thought to provide them with a competitive

advantage in environments characterized by unpre-

dictable, but heavy rainfall events (Williams et al., 1998).

Nevertheless, closer investigation of the relationship

between tGCC and ANPP at the start of the growing sea-

son may yield additional insights on the use of averaged

and temporal measures of VI’s to predict herbaceous

ANPP.

Prediction of aboveground net primary
productivity in natural ecosystems

All three considered VI’s had limited predictive capacity

of herbaceous ANPP when used alone, while combina-

tions of tGCC with either NDVIs measures or disc-

measured biomass perform well (Table 3). This implies

that at least two forms of information are needed to pre-

dict herbaceous ANPP at high temporal resolution: a

measure that describes vegetation state (which could be

phenological or in terms of biomass) and a measure that

captures vegetation responses to water inputs.

Several measures of NDVI, such as the maximum

NDVI over a growing season and time-integrated NDVI,

have been suggested to be good predictors of annual

ANPP (Hobbs, 1995; Paruelo et al., 1997). Grassy biomes,

such as grasslands and savannas, are believed to be suit-

able systems to derive estimates on annual ANPP from

NDVI data due to the synchrony between canopy devel-

opment and photosynthetic activity (Paruelo et al., 1997).

At longer time scales, periods of temporary low produc-

tivity are averaged out and what remains is the gradual

build-up of aboveground standing biomass in response to

accumulative rainfall. We hypothesized that at shorter

time scales, average NDVI would become less informative

because of the alternation between productive and less

productive periods during the same season due to the

stochastic nature of rainfall in tropical savannas. Our

study confirms that a measure that describes the change

Figure 7. Predicted relationship with 95% confidence interval

between the proportion of instances of daily GCC increase beyond

the set threshold (> site-specific SD) and the day since last estimated

rainfall event (merged information from CHIRPS and visually observed

on camera trap images). The proportion is calculated as the number

of sites that recorded green-up divided by the total number of sites

and is given for 10 separate rainfall events during the 2018 study

period. The heavy rainfall event of 19 June 2018 is indicated with

blue points. Note that the data points are jittered to prevent

overplotting of discrete values. CHIRPS, Climate Hazards Group

InfraRed Precipitation with Station data; GCC, green chromatic

coordinate.
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in NDVIs over 2 weeks (ΔNDVIs) explains more varia-

tion in ANPP than average NDVIs over the same period

(Table 3). NDVIs signifies increases or decreases in green

biomass (Myneni et al., 1995) and consequently can pro-

vide information on the phenological state of the vegeta-

tion (Cheng et al., 2020) (Fig. 3). While further analysis

may confirm or refute this, given that our model focusses

on a change in NDVI and alternative vegetation indices

(like EVI) represent such changes similarly, we expect that

at best small improvements could arise from testing alter-

native spectral VIs. The fitted model predicts that produc-

tivity is lowest at the highest and the lowest (negative)

values of NDVIs (Fig. 4A). High values may reflect herba-

ceous vegetation in a ‘young’ phenological stage, which

occurs commonly at the SOS, after fire events, or in sites

with high grazing intensity (McNaughton, 1985). Low

biomass may have limited productivity in these cases

(Fig. 4E and F). Negative values for NDVIs were mostly

associated with the EOS, where large fractions of green

biomass turned brown. Despite rainfall inputs in this per-

iod (Fig. 5), decreased photosynthetically active tissue

may have limited the ability of the plants to fully respond

to this input (Schwinning & Sala, 2004), which explains

why late-season rainfall, in general, is a poor predictor of

productivity in other C4-dominated grassy biomes (Post

& Knapp, 2019).

Spatiotemporal resolution and
responsiveness to rain events

The high predictive capacity of models with reduced tem-

poral resolution (≥10 days) in NDVIs (Fig. 6C) supports

the explanation that NDVIs is a good predictor of pro-

ductivity because it reflects the vegetation’s maturity.

Phenological cycles of tropical grasses play out at the time

scales of months (Parihar & Pathak, 2006). Separation of

distinct phenophases, such as canopy development and

canopy maturation, should therefore not require NDVI

measurements at high temporal resolution. While some

models still had high adj. R2 values beyond a resolution

of ≥10 days, the mean predictive capacity of models

seemed to decrease. This could be explained by specific

time moments that were excluded in the reduced datasets

of these models; accurate prediction on the phenological

state can be sensitive to observation gaps (Melaas

et al., 2016), and in this study, some models at reduced

resolution may have missed, or ‘flattened’ the peak of the

season. Lastly, the poor fit of models that include

ground-based NDVI measurements (Table 3) may have

been caused by the high temporal resolution of NDVIg

(every 4 days) (Table 3). The observed short-term

increases in NDVIg may have, for example concealed the

senescence phase in sites B and C (Fig. 5) and thereby

have caused an overestimation in productivity during this

phase.

Automated field cameras allowed us to derive GCC time

series at high temporal resolution and therefore provide

detailed information on productive periods. The clear

responses of GCC to rainfall events (Fig. 7) support the idea

that tropical savanna vegetation responds instantly to rain-

fall (Moreno-de las Heras et al., 2012; Schwinning &

Sala, 2004; Williams et al., 1998) and that these responses

can be used to predict herbaceous ANPP. The fact that vege-

tation sometimes failed to respond to rainfall (Fig. 7) may

be because rain events were not actually measured at each

camera location but relied predominantly on CHIRPS esti-

mates. The absence of green-up could therefore have

resulted from local variations in rainfall, whereby not all

camera locations received the CHIRPS-estimated rainfall.

Besides the temporal component, the spatial resolution of

tGCC thus plays an important role as well (visualized in

Fig. 4B–G), which is supported by the decrease in mean adj.

R2 of models with reduced spatial resolution in tGCC

(Fig. 6B). Interestingly, two models using a tGCC measure

with reduced temporal resolution (5 and 6 days) showed

relatively high adj. R2 (Fig. 6A). These models could have

by ‘chance’ captured influential rain events (by including a

GCC measurement within 1 day after a rain event) while

most of the models using tGCC at the same temporal reso-

lution (at different starting data) had no predictive capacity.

The best field-based model, which included tGCC and

a quadratic term for disc-measured biomass, had slightly

lower predictive capacity compared to the overall best

model that combined ground-based and satellite-based

methods (Table 3). The result that temporal resolution is

of minimal importance for disc-measured biomass (Fig. 6

E) supports the idea that the field-based model partly

misses the previously mentioned phenological context as

disc pasture meters cannot distinguish between green and

dead biomass. In the field-based model, disc-measured

biomass likely captures the effect of spatial variation in

biomass (Fig. 6F) and thus the generally positive effects

of biomass on herbaceous ANPP as more can be pro-

duced when there is more photosynthetic active plant

material. Because the field-based model relies on methods

that do not require cloud-free images, it could serve as an

(temporary) alternative during periods of prolonged

cloud-cover. While it is still more labour intensive than

the satellite-based method, the results imply that the

method only requires a single site visit in 10 weeks’ time

while reaching a similar accuracy.

Applications and conclusion

Accurate estimates of herbaceous ANPP serve a wide vari-

ety of ecological applications. Here, we have presented a

596 ª 2022 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London.
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new method that improves the temporal resolution of

such estimates. A better description of short-term produc-

tivity can help to understand and model a range of eco-

logical processes, such as animal movement dynamics.

Animal movements are generally shaped by the dynamic

nature of forage resources at multiple spatial scales

(Aikens et al., 2020). Migratory routes in natural grassy

ecosystems function both as corridors between seasonal

ranges (ecosystem scale), but are also foraging habitat

themselves on local scales (Aikens et al., 2017). In these

local contexts, herbivores are attracted to green pastures

with high nutritional quality, but they may be limited by

the available quantity (Voeten et al., 2010). Accurate pro-

ductivity estimates at fine resolution could help us under-

stand movement choices and strategies because they

provide an estimate on both the resource’ future quantity

and quality (freshly produced pasture). Another applica-

tion is to get more reliable in situ measurements at speci-

fic locations, which can help to improve empirical and

physical of forage productivity or biomass accumulation

in tropical grassy biomes.

An advantage of using field cameras to estimate ANPP

is that digital repeat imagery is a ubiquitous, multi-

purpose tool with applications in, for example the study

of phenology and the monitoring of wildlife. Phenology

plays an important role in key ecosystem functions and

processes such as competitive interactions, trophic

dynamics, primary production and nutrient cycling (Cle-

land et al., 2007; Morisette et al., 2009). The use of field

cameras enables researchers to characterize the entire sea-

sonal trajectory of herbaceous canopy greenness and the

spatiotemporal distribution of herbivores while at the

same time having good estimates of ANPP when com-

bined with either field-approximated biomass (in space)

or satellite-derived NDVI measures.

This study highlights that the key to successfully esti-

mating herbaceous ANPP on short time intervals is to

detect the spatial and temporal variability in response to

rain. By quantifying the response to rain over a time

interval, camera-derived measures like tGCC offer an

important contribution to both field-based methods (in

the absence of cloud-free imagery) and remote-sensing

approaches. While in need of further evaluation in other

phenophases and ecosystems, we conclude that field cam-

eras can offer a reliable and cost-effective method to

improve the estimation of herbaceous ANPP.
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ductivity, considering different lags of tGCC measures

(tGCCm: moving window approach) and aboveground
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Table S4. Model fits (quasi AIC, the Akaike information

criterion for generalized linear models with quasi-Poisson

errors) for Herbaceous Aboveground Net Primary pro-

ductivity, considering different lags of both temporal and

time-integrated measures of near-surface NDVI (NDVIg).
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Figure S1. Near-surface NDVIg measurements (A) and

biomass (disc pasture meter) measurements (B) for sites

A–H for the 3rd of May 2018 (peak of season) across

multiple scales: Sentinel plot (30 x 30 m), GGC plot (10

x 5 m), and the measurement near the cage (1 x 1 m).

Figure S2. Observed versus Jackknife predicted regression

plots for the best model, combining tGCC, NDVIs, and a

quadratic term for NDVIs (A) and the best field-based

model, combing tGCC and a quadratic term for above-

ground standing biomass (B). The regression model and

parameters are shown in the graph.
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