436 research outputs found

    The hazards of lack of co-registration of ictal brain SPECT with MRI: A case report of sinusitis mimicking a brainstem seizure focus

    Get PDF
    BACKGROUND: Single photon emission computed tomography (SPECT) following injection of radiotracer during a seizure is known as ictal SPECT. Comparison of an ictal SPECT study to a baseline or interictal study can aid identification of a seizure focus. CASE PRESENTATION: A young woman with encephalitis and refractory seizures underwent brain SPECT during a period of frequent seizure-like episodes, and during a seizure-free period. A focal area of increased radiotracer uptake present only when she was experiencing frequent seizure-like episodes was originally localized to the brainstem, but with later computerized co-registration of SPECT to MRI, was found to lie outside the brain, in the region of the sphenoid sinus. CONCLUSION: Low-resolution SPECT images present difficulties in interpretation, which can be overcome through co-registration to higher-resolution structural images

    Estimation of lung vital capacity before and after coronary artery bypass grafting surgery: a comparison of incentive spirometer and ventilometry

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Measurement of vital capacity (VC) by spirometry is the most widely used technique for lung function evaluation, however, this form of assessment is costly and further investigation of other reliable methods at lower cost is necessary. Objective: To analyze the correlation between direct vital capacity measured with ventilometer and with incentive inspirometer in patients in pre and post cardiac surgery.</p> <p>Methodology</p> <p>Cross-sectional comparative study with patients undergoing cardiac surgery. Respiratory parameters were evaluated through the measurement of VC performed by ventilometer and inspirometer. To analyze data normality the Kolmogorov-Smirnov test was applied, for correlation the Pearson correlation coefficient was used and for comparison of variables in pre and post operative period Student's t test was adopted. We established a level of ignificance of 5%. Data was presented as an average, standard deviation and relative frequency when needed. The significance level was set at 5%.</p> <p>Results</p> <p>We studied 52 patients undergoing cardiac surgery, 20 patients in preoperative with VC-ventilometer: 32.95 ± 11.4 ml/kg and VC-inspirometer: 28.9 ± 11 ml/Kg, r = 0.7 p < 0.001. In the post operatory, 32 patients were evaluated with VC-ventilometer: 28.27 ± 12.48 ml/kg and VC-inspirometer: 26.98 ± 11 ml/Kg, r = 0.95 p < 0.001. Presenting a very high correlation between the evaluation forms studied.</p> <p>Conclusion</p> <p>There was a high correlation between DVC measures with ventilometer and incentive spirometer in pre and post CABG surgery. Despite this, arises the necessity of further studies to evaluate the repercussion of this method in lowering costs at hospitals.</p

    Hemicraniectomy after middle cerebral artery infarction with life-threatening Edema trial (HAMLET). Protocol for a randomised controlled trial of decompressive surgery in space-occupying hemispheric infarction

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Patients with a hemispheric infarct and massive space-occupying brain oedema have a poor prognosis. Despite maximal conservative treatment, the case fatality rate may be as high as 80%, and most survivors are left severely disabled. Non-randomised studies suggest that decompressive surgery reduces mortality substantially and improves functional outcome of survivors. This study is designed to compare the efficacy of decompressive surgery to improve functional outcome with that of conservative treatment in patients with space-occupying supratentorial infarction</p> <p>Methods</p> <p>The study design is that of a multi-centre, randomised clinical trial, which will include 112 patients aged between 18 and 60 years with a large hemispheric infarct with space-occupying oedema that leads to a decrease in consciousness. Patients will be randomised to receive either decompressive surgery in combination with medical treatment or best medical treatment alone. Randomisation will be stratified for the intended mode of conservative treatment (intensive care or stroke unit care). The primary outcome measure will be functional outcome, as determined by the score on the modified Rankin Scale, at one year.</p

    Anticonvulsant effects of aerial parts of Passiflora incarnata extract in mice: involvement of benzodiazepine and opioid receptors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Passion flower (<it>Passiflora incarnata</it>) is used in traditional medicine of Europe and South America to treat anxiety, insomnia and seizure. Recently, it has shown antianxiety and sedative effects in human.</p> <p>Methods</p> <p>In this study, anticonvulsant effects of hydro- alcoholic extract of Passiflora, Pasipay, were examined by using pentylentetrazole model (PTZ) on mice. Pasipay, diazepam, and normal saline were injected intraperitoneally at the doses 0.4–0.05 mg/kg, 0.5–1 mg/kg and 10 ml/kg respectively 30 minutes before PTZ (90 mg/kg, i.p). The time taken before the onset of clonic convulsions, the duration of colonic convulsions, and the percentage of seizure and mortality protection were recorded. For investigating the mechanism of Pasipay, flumazenil (2 mg/kg, i.p) and naloxone (5 mg/kg, i.p) were also injected 5 minutes before Pasipay.</p> <p>Results</p> <p>An ED<sub>50 </sub>value of Pasipay in the PTZ model was 0.23 mg/kg (%95 CL: 0.156, 0.342). Pasipay at the dose of 0.4 mg/kg prolonged the onset time of seizure and decreased the duration of seizures compared to saline group (p < 0.001). At the dose of 0.4 mg/kg, seizure and mortality protection percent were 100%. Flumazenil and naloxone could suppress anticonvulsant effects of Pasipay.</p> <p>Conclusion</p> <p>It seems that Pasipay could be useful for treatment absence seizure and these effects may be related to effect of it on GABAergic and opioid systems. More studies are needed in order to investigate its exact mechanism.</p

    VEGF-A165b is an endogenous neuroprotective splice isoform of vascular endothelial growth factor A in vivo and in vitro

    Get PDF
    Vascular endothelial growth factor (VEGF) A is generated as two isoform families by alternative RNA splicing, represented by VEGF-A165a and VEGF-A165b. These isoforms have opposing actions on vascular permeability, angiogenesis, and vasodilatation. The proangiogenic VEGF-A165a isoform is neuroprotective in hippocampal, dorsal root ganglia, and retinal neurons, but its propermeability, vasodilatatory, and angiogenic properties limit its therapeutic usefulness. In contrast, a neuroprotective effect of endogenous VEGF-A165b on neurons would be advantageous for neurodegenerative pathologies. Endogenous expression of human and rat VEGF-A165b was detected in hippocampal and cortical neurons. VEGF-A165b formed a significant proportion of total VEGF-A in rat brain. Recombinant human VEGF-A165b exerted neuroprotective effects in response to multiple insults, including glutamatergic excitotoxicity in hippocampal neurons, chemotherapy-induced cytotoxicity of dorsal root ganglion neurons, and retinal ganglion cells (RGCs) in rat retinal ischemia-reperfusion injury in vivo. Neuroprotection was dependent on VEGFR2 and MEK1/2 activation but not on p38 or phosphatidylinositol 3-kinase activation. Recombinant human VEGF-A165b is a neuroprotective agent that effectively protects both peripheral and central neurons in vivo and in vitro through VEGFR2, MEK1/2, and inhibition of caspase-3 induction. VEGF-A165b may be therapeutically useful for pathologies that involve neuronal damage, including hippocampal neurodegeneration, glaucoma diabetic retinopathy, and peripheral neuropathy. The endogenous nature of VEGF-A165b expression suggests that non-isoform-specific inhibition of VEGF-A (for antiangiogenic reasons) may be damaging to retinal and sensory neurons

    Reliability of clinical tests to evaluate nerve function and mechanosensitivity of the upper limb peripheral nervous system

    Get PDF
    BACKGROUND: Clinical tests to assess peripheral nerve disorders can be classified into two categories: tests for afferent/efferent nerve function such as nerve conduction (bedside neurological examination) and tests for increased mechanosensitivity (e.g. upper limb neurodynamic tests (ULNTs) and nerve palpation). Reliability reports of nerve palpation and the interpretation of neurodynamic tests are scarce. This study therefore investigated the intertester reliability of nerve palpation and ULNTs. ULNTs were interpreted based on symptom reproduction and structural differentiation. To put the reliability of these tests in perspective, a comparison with the reliability of clinical tests for nerve function was made. METHODS: Two experienced clinicians examined 31 patients with unilateral arm and/or neck pain. The examination included clinical tests for nerve function (sensory testing, reflexes and manual muscle testing (MMT)) and mechanosensitivity (ULNTs and palpation of the median, radial and ulnar nerve). Kappa statistics were calculated to evaluate intertester reliability. A meta-analysis determined an overall kappa for the domains with multiple kappa values (MMT, ULNT, palpation). We then compared the difference in reliability between the tests of mechanosensitivity and nerve function using a one-sample t-test. RESULTS: We observed moderate to substantial reliability for the tests for afferent/efferent nerve function (sensory testing: kappa = 0.53; MMT: kappa = 0.68; no kappa was calculated for reflexes due to a lack of variation). Tests to investigate mechanosensitivity demonstrated moderate reliability (ULNT: kappa = 0.45; palpation: kappa = 0.59). When compared statistically, there was no difference in reliability for tests for nerve function and mechanosensitivity (p = 0.06). CONCLUSION: This study demonstrates that clinical tests which evaluate increased nerve mechanosensitivity and afferent/efferent nerve function have comparable moderate to substantial reliability. To further investigate the clinometric properties of these tests, more studies are needed to evaluate their validity

    A Glucose Fuel Cell for Implantable Brain–Machine Interfaces

    Get PDF
    We have developed an implantable fuel cell that generates power through glucose oxidation, producing steady-state power and up to peak power. The fuel cell is manufactured using a novel approach, employing semiconductor fabrication techniques, and is therefore well suited for manufacture together with integrated circuits on a single silicon wafer. Thus, it can help enable implantable microelectronic systems with long-lifetime power sources that harvest energy from their surrounds. The fuel reactions are mediated by robust, solid state catalysts. Glucose is oxidized at the nanostructured surface of an activated platinum anode. Oxygen is reduced to water at the surface of a self-assembled network of single-walled carbon nanotubes, embedded in a Nafion film that forms the cathode and is exposed to the biological environment. The catalytic electrodes are separated by a Nafion membrane. The availability of fuel cell reactants, oxygen and glucose, only as a mixture in the physiologic environment, has traditionally posed a design challenge: Net current production requires oxidation and reduction to occur separately and selectively at the anode and cathode, respectively, to prevent electrochemical short circuits. Our fuel cell is configured in a half-open geometry that shields the anode while exposing the cathode, resulting in an oxygen gradient that strongly favors oxygen reduction at the cathode. Glucose reaches the shielded anode by diffusing through the nanotube mesh, which does not catalyze glucose oxidation, and the Nafion layers, which are permeable to small neutral and cationic species. We demonstrate computationally that the natural recirculation of cerebrospinal fluid around the human brain theoretically permits glucose energy harvesting at a rate on the order of at least 1 mW with no adverse physiologic effects. Low-power brain–machine interfaces can thus potentially benefit from having their implanted units powered or recharged by glucose fuel cells
    corecore