94 research outputs found

    Einstein static universe as a brane in extra dimensions

    Get PDF
    We present a brane-world scenario in which two regions of AdS5AdS_5 space-time are glued together along a 3-brane with constant positive curvature such that {\em all} spatial dimensions form a compact manifold of topology S4S^4. It turns out that the induced geometry on the brane is given by Einstein's static universe. It is possible to achieve an anisotropy of the manifold which allows for a huge hierarchy between the size of the extra dimension RR and the size of the observable universe RUR_U at present. This anisotropy is also at the origin of a very peculiar property of our model: the physical distance between {\em any two points} on the brane is of the order of the size of the extra dimension RR regardless of their distance measured with the use of the induced metric on the brane. In an intermediate distance regime Râ‰Șrâ‰ȘRUR \ll r \ll R_U gravity on the brane is shown to be effectively 4-dimensional, with corresponding large distance corrections, in complete analogy with the Randall-Sundrum II model. For very large distances r∌RUr \sim R_U we recover gravity in Einstein's static universe. However, in contrast to the Randall-Sundrum II model the difference in topology has the advantage of giving rise to a geodesically complete space.Comment: 45 pages, 3 figure

    Pion-Kaon Scattering near the Threshold in Chiral SU(2) Perturbation Theory

    Get PDF
    In the context of chiral SU(2) perturbation theory, pion-kaon scattering is analysed near the threshold to fourth chiral order. The scattering amplitude is calculated both in the relativistic framework and by using an approach similar to heavy baryon chiral perturbation theory. Both methods lead to equivalent results. We obtain relations between threshold parameters, valid to fourth chiral order, where all those combinations of low-energy constants which are not associated with chiral-symmetry breaking terms drop out. The remaining low-energy constants can be estimated using chiral SU(3) symmetry. Unfortunately, the experimental information is not precise enough to test our low-energy theorems.Comment: 38 pages, 5 figures, PhD Thesis, references adde

    Inflating magnetically charged braneworlds

    Full text link
    Numerical solutions of Einstein, scalar, and gauge field equations are found for static and inflating defects in a higher-dimensional spacetime. The defects have (3+1)(3+1)-dimensional core and magnetic monopole configuration in n=3n=3 extra dimensions. For symmetry-breaking scale η\eta below the critical value ηc\eta_c, the defects are characterized by a flat worldsheet geometry and asymptotically flat extra dimensions. The critical scale ηc\eta_c is comparable to the higher-dimensional Planck scale and has some dependence on the gauge and scalar couplings. For η=ηc\eta=\eta_c, the extra dimensions degenerate into a `cigar', and for η>ηc\eta>\eta_c all static solutions are singular. The singularity can be removed if the requirement of staticity is relaxed and defect cores are allowed to inflate. The inflating solutions have de Sitter worldsheets and cigar geometry in the extra dimensions. Exact analytic solutions describing the asymptotic behavior of these inflating monopoles are found and the parameter space of these solutions is analyzed.Comment: 35 pages, revtex, 18 eps figure

    Brane world in a texture

    Get PDF
    We study five dimensional brane physics induced by an O(2) texture formed in one extra dimension. The model contains two 3-branes of nonzero tension, and the extra dimension is compact. The symmetry-breaking scale of the texture controls the particle hierarchy between the two branes. The TeV-scale particles are confined to the negative-tension brane where the observer sees gravity as essentially four dimensional. The effect of massive Kaluza-Klein gravitons is suppressed.Comment: 25 pages, revtex, 5 eps figures, Significant changes have been made for the tachyonic mode, One figure has been replaced, To appear in Physical Review

    Localizing gravity on a 't Hooft-Polyakov monopole in seven dimensions

    Get PDF
    We present regular solutions for a brane world scenario in the form of a 't Hooft-Polyakov monopole living in the three-dimensional spherical symmetric transverse space of a seven-dimensional spacetime. In contrast to the cases of a domain-wall in five dimensions and a string in six dimensions, there exist gravity-localizing solutions for both signs of the bulk cosmological constant. A detailed discussion of the parameter space that leads to localization of gravity is given. A point-like monopole limit is discussed.Comment: 29 pages, 17 figure

    Stability of inflating branes in a texture

    Full text link
    We investigate the stability of inflating branes embedded in an O(2) texture formed in one extra dimension. The model contains two 3-branes of nonzero tension, and the extra dimension is compact. When the gravitational perturbation is applied, the vacuum energy which is responsible for inflation on the branes stabilizes the branes if the symmetry-breaking scale of the texture is smaller than some critical value. This critical value is determined by the particle-hierarchy scale between the two branes, and is smaller than the 5D Planck-mass scale. The scale of the vacuum energy can be considerably low in providing the stability. This stability story is very different from the flat-brane case which always suffers from the instability due to the gravitational perturbation.Comment: 16 pages, 5 eps figures, revte

    Braneworlds in six dimensions: new models with bulk scalars

    Get PDF
    Six dimensional bulk spacetimes with 3-- and 4--branes are constructed using certain non--conventional bulk scalars as sources. In particular, we investigate the consequences of having the phantom (negative kinetic energy) and the Brans--Dicke scalar in the bulk while obtaining such solutions. We find geometries with 4--branes with a compact on--brane dimension (hybrid compactification) which may be assumed to be small in order to realize a 3--brane world. On the other hand, we also construct, with similar sources, bulk spacetimes where a 3--brane is located at a conical singularity. Furthermore, we investigate the issue of localization of matter fields (scalar, fermion, graviton, vector) on these 3-- and 4--branes and conclude with comments on our six dimensional models.Comment: 24 pages, 1 figure, Replaced to match version published in Class. Quant. Gra

    Chiral Extrapolation of the Strangeness Changing K pi Form Factor

    Get PDF
    We perform a chiral extrapolation of lattice data on the scalar K pi form factor and the ratio of the kaon and pion decay constants within Chiral Perturbation Theory to two loops. We determine the value of the scalar form factor at zero momentum transfer, at the Callan-Treiman point and at its soft kaon analog as well as its slope. Results are in good agreement with their determination from experiment using the standard couplings of quarks to the W boson. The slope is however rather large. A study of the convergence of the chiral expansion is also performed.Comment: few minor change

    Phase-contrast enhanced mammography: A new diagnostic tool for breast imaging

    Full text link
    Phase contrast and scattering-based X-ray imaging can potentially revolutionize the radiological approach to breast imaging by providing additional and complementary information to conventional, absorption-based methods. We investigated native, non-fixed whole breast samples using a grating interferometer with an X-ray tube-based configuration. Our approach simultaneously recorded absorption, differential phase contrast and small-angle scattering signals. The results show that this novel technique - combined with a dedicated image fusion algorithm - has the potential to deliver enhanced breast imaging with complementary information for an improved diagnostic process
    • 

    corecore