
ar
X

iv
:h

ep
-t

h/
04

07
23

4v
1 

 2
7 

Ju
l 2

00
4

Einstein static universe as a brane in extra dimensions

A. Gruppusoa,b,c∗, E. Roessla† and M. Shaposhnikova‡
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Abstract

We present a brane-world scenario in which two regions ofAdS5 space-time are glued together
along a 3-brane with constant positive curvature such that all spatial dimensions form a compact
manifold of topology S4. It turns out that the induced geometry on the brane is given by
Einstein’s static universe. It is possible to achieve an anisotropy of the manifold which allows
for a huge hierarchy between the size of the extra dimension R and the size of the observable
universe RU at present. This anisotropy is also at the origin of a very peculiar property of our
model: the physical distance between any two points on the brane is of the order of the size of
the extra dimension R regardless of their distance measured with the use of the induced metric
on the brane. In an intermediate distance regime R ≪ r ≪ RU gravity on the brane is shown to
be effectively 4-dimensional, with corresponding large distance corrections, in complete analogy
with the Randall-Sundrum II model. For very large distances r ∼ RU we recover gravity in
Einstein’s static universe. However, in contrast to the Randall-Sundrum II model the difference
in topology has the advantage of giving rise to a geodesically complete space.
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1 Introduction

Recent suggestions that large [1]–[3] or infinite [4]–[6] extra dimensions are not necessarily in conflict
with present observations provide new opportunities for addressing several outstanding problems
of modern theoretical physics like the hierarchy problem [1]–[3],[5], [7] or the cosmological constant
problem [8]–[10]. In the course of this development and inspired by string theoretical arguments [11],
the notion of brane world scenarios emerged in which the usual Standard Model fields are supposed
to be confined to a so-called 3-brane, a 4-dimensional sub-manifold of some higher-dimensional
space-time. As shown in [6] also gravity can appear to be effectively 4-dimensional for a brane-
bound observer provided the conventional scheme of Kaluza-Klein compactification [12]–[15] is
replaced by a compactification using non-factorizable (also called warped) geometries (see also [8]).
This triggered an immense research activity in theories involving 3-branes with interests ranging
from elucidating the global space-time structure of brane world scenarios, properties of gravity,
cosmology and brane cosmological perturbations, generalizations to higher dimensions etc. While
the possibilities are rich, realistic scenarios remain rare. For example the simple Randall-Sundrum-
II model [6] faces the problem of being geodesically incomplete [16, 17, 18]. It is therefore reasonable
to look for adequate alternatives or generalizations to the Randall-Sundrum-II model which avoid
the above mentioned problems while sharing its pleasant feature of the effective 4-dimensional low
energy gravity on the brane.

In this paper we present a 5-dimensional brane-world model which solves the geodesic in-
completeness of the Randall-Sundrum II model while preserving its phenomenological properties
concerning the localization of gravity.

We try to illustrate our motivation for considering a particular geometry by using the simple
picture of a domain structure in extra dimensions resulting from a spontaneously broken discrete
symmetry. The associated Higgs-field takes different values in regions separated by a domain wall,
which restricts the possibilities of combining domain walls depending on the global topology of
the space-time under consideration. We concentrate on the 5-dimensional case, see [7],[19]–[24] for
higher dimensional constructions.

Let us analyze a few simple cases:

• Non-compact extra dimension: y ∈ (−∞,+∞). In this case, by choosing the origin y = 0 to
coincide with the position of the brane, we obtain two non-overlapping regions (−∞, 0) and
(0,+∞) and we can thus consistently have one brane in such a theory. An example for this
configuration is provided by the Randall-Sundrum II model [6].

• Compact extra dimension: y ∈ [0, 2π]. We now consider two possibilities, depending on the
spatial topology of our manifold:

– (a) R
3 × S1: If the ordinary dimensions are supposed to be non-compact, it is not

possible to consistently put only one brane in the extra dimensions. At least two branes
are needed.

– (b) S4: If all spatial coordinates are part of a compact manifold, the simple picture
shown in Fig. 1 seems to suggest that it is possible to consistently put a single brane in
the bulk space-time.

To the best of our knowledge case (b) has not yet been considered in the literature and our aim is
to present such a construction.
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This paper is organized as follows: in Section 2 we discuss the basic geometric and topological
properties of our brane-world scenario like Einstein equations, junction conditions and the distance
hierarchy between the extra dimension R and the observable universe RU . Section 3 is dedicated to
the study of geodesics and the demonstration that our model does not suffer from being geodesically
incomplete. In section 4 we present a detailed computation of the propagator of a massless scalar
field in the given background serving as an easy, phenomenological approach to the study of gravity.
We discuss the behavior of the two-point function in three different distance regimes. It turns
out that the computations are rather technical and we therefore collect large parts of it in four
appendices. We eventually draw conclusions in section 5.

BRANE 

Upper Hemisphere

+1

Lower Hemisphere 

−1

Figure 1: Compact topology. S3-brane embedded in S4. +1 and −1 symbolically represent the
different vacuum expectation values taken by the Higgs field in different regions of space.

2 The background equations

The aim of this section is to present the topology and geometry of the brane-world model which we
set out to study but also to motivate how this particular model emerged through imposing several
physical conditions on the more general set of solutions.

2.1 Einstein equations

We would like to construct a space-time with all spatial dimensions being part of the same compact
manifold. One more motivation for this lies in a possible solution of the strong CP problem within
theories with extra dimensions [25]. The overall topology would then be given by R × K, where
R represents the time-coordinate and K any compact manifold. As announced, we will restrict
ourselves to the case of one extra dimension and an induced metric on the brane characterized by a
spatial component of geometry S3. The idea is to combine two 5-dimensional regions of space-time
dominated by a cosmological constant Λ in such a way that the border of the two regions can be
identified with a 3-brane, constituting our observable universe. As pointed out in [25] the manifold
K has to be highly anisotropic in order to single out the small extra dimension from the three usual
ones. It is not a priory clear whether the Einstein equations allow for such solutions at all and if
so whether gravity can be localized on the brane in such a setup.

We choose the following ansatz for the 5-dimensional metric consistent with the above require-
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ments:1

ds2 = gMNdx
MdxN = −σ2(θ) dt2 +R2

U γ
2(θ) dΩ2

3 +R2 dθ2 , (2.1)

where θ ∈ [−π
2 ,

π
2 ] denotes the extra coordinate and R and RU are constants representing the size

of the extra dimension and the size of the observable universe at present, respectively. dΩ2
3 denotes

the line element of a 3-sphere:

dΩ2
3 = dϕ2

1 + sin2 ϕ1 dϕ
2
2 + sin2 ϕ1 sin2 ϕ2 dϕ

2
3 , (2.2)

where ϕ1, ϕ2 belong to the interval [0, π], ϕ3 to [0, 2π]. Capital latin letters M,N, .. will range from
0 to 4. In order to obtain a compact space, we require γ(±π

2 ) = 0.
Metrics which can locally be put into the form (2.1) are sometimes referred to as asymmetrically

warped metrics due to two different functions (σ and γ in our notations) multiplying the temporal
and spatial part of the 4-dimensional coordinate differentials. Their relevance in connection with 4-
dimensional Lorentz-violation at high energies was first pointed out in [27]. More recent discussions
of this subject can be found in [28]–[29] or [16] and references therein. A common prediction of
theories of this kind is that dispersion relations get modified at high energies. For a field-theoretical
discussion of Lorentz violating effects in the context of the Standard Model of particle physics
see [30].

The Einstein equations in 5 dimensions with a bulk cosmological constant Λ and a stress-energy
tensor TMN take the following form:

RMN − 1

2
RgMN + Λ gMN =

8π

M3
TMN , (2.3)

where M is the fundamental scale of gravity. We choose to parametrize the stress-energy tensor in
the following way, consistent with the symmetries of the metric:

T 0
0 = ǫ0(θ) < 0 , T i

j = δi
j ǫ(θ) , T θ

θ = ǫθ(θ) , (2.4)

where as indicated the above diagonal components depend only on the extra coordinate θ. Lower
case latin indices i, j label the coordinates on S3.

Using the metric ansatz (2.1) together with the stress-energy tensor (2.4) the Einstein equations
(2.3) become

3

R2

[(
γ′

γ

)2

+
γ′′

γ
−
(
R

RU

)2 1

γ2

]

+ Λ =
8π

M3
ǫ0 , (2.5)

1

R2

[(
γ′

γ

)2

+ 2
γ′

γ

σ′

σ
+ 2

γ′′

γ
+
σ′′

σ
−
(
R

RU

)2 1

γ2

]

+ Λ =
8π

M3
ǫ , (2.6)

3

R2

[(
γ′

γ

)2

+
γ′

γ

σ′

σ
−
(
R

RU

)2 1

γ2

]

+ Λ =
8π

M3
ǫθ , (2.7)

where ′ denotes differentiation with respect to θ. The conservation of stress-energy, or equivalently,
the Bianchi-identities lead to the following constraint relating the three independent components
ǫ0, ǫ and ǫθ:

ǫ′θ +

(
σ′

σ
+ 3

γ′

γ

)

ǫθ −
σ′

σ
ǫ0 − 3

γ′

γ
ǫ = 0 . (2.8)

1Our conventions for the metric and the Riemann tensor are those of reference [26].
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2.2 Vacuum solution

In this paper we do not intend to provide a field theoretical model which could generate the geometry
we are about to describe. Our aim is to study a singular brane, located at θb = 0 separating two
vacuum regions in the bulk. Of course the solutions to the Einstein equations in vacuum with a
cosmological constant term are nothing but the familiar de-Sitter (Λ > 0), Minkowski (Λ = 0) and
anti-de-Sitter (Λ < 0) space-times. To see how these geometries can be recovered using the line
element (2.1) we set the right hand sides of (2.5)-(2.7) equal to zero and subtract eq. (2.7) from
eq. (2.5) to obtain σ = c γ′, where c is a constant. Putting this back in eqs. (2.5)-(2.7), we are left
with only one independent differential equation

3

R2

[(
γ′

γ

)2

+
γ′′

γ
−
(
R

RU

)2 1

γ2

]

+ Λ = 0. (2.9)

The solution of (2.9) is trivial and by means of σ = c γ′ we find

γ(θ) =
sinh

[
ω
(

π
2 − |θ|

)]

sinh(ω π
2 )

, σ(θ) =
cosh

[
ω
(

π
2 − |θ|

)]

cosh(ω π
2 )

, (2.10)

provided that RU = R sinh(ω π
2 )/ω and ω2 = −ΛR2/6. Notice that the solution (2.10) does not

contain any integration constant because we already imposed the boundary conditions γ(±π
2 ) = 0

and γ(0) = σ(0) = 1. Moreover, we chose the whole setup to be symmetric under the transformation
θ → −θ. From (2.10) it is now obvious that locally (for θ > 0 and θ < 0) the line element (2.1)
correctly describes de-Sitter, Minkowski and anti-de-Sitter space-times for imaginary, zero and real
values of ω, respectively. For our purposes only the AdS solution will be of any interest as we will
see in the following section. A simple change of coordinates starting from (2.1) and (2.10) shows
that the AdS-radius in our notations is given by RAdS = R/ω =

√

−6/Λ.2 At this stage, the
validity of the vacuum solution (2.10) is restricted to the bulk, since it is not even differentiable
in the classical sense at θ = 0. In order to give sense to (2.10) for all values of θ we will have to
allow for some singular distribution of stress-energy at θ = 0 and solve (2.5)-(2.7) in the sense of
distributions.

2.3 The complete solution for a singular brane

As announced, we now refine our ansatz for the energy momentum tensor (2.4) to allow for a
solution of eqs. (2.5)-(2.7) in the whole interval −π/2 ≤ θ ≤ π/2:

ǫ0(θ) = c0
δ(θ)

R
, ǫ(θ) = c

δ(θ)

R
, ǫθ(θ) = cθ

δ(θ)

R
. (2.11)

After replacing the above components (2.11) in eqs. (2.5)-(2.7) and integrating over θ from −η to
η, followed by the limit η → 0 we find:

:
γ′

γ
: =

8πR

3M3
c0 , (2.12)

:
σ′

σ
: + 2 :

γ′

γ
: =

8πR

M3
c , (2.13)

0 = cθ , (2.14)

2See also footnote 7.
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where the symbol : . . . : is used to denote the jump of a quantity across the brane defined by:

: f : ≡ lim
η→0

[f(η) − f(−η)] . (2.15)

Note that in the above step we made use of the identity

γ′′

γ
=

(
γ′

γ

)′
+

(
γ′

γ

)2

(2.16)

together with the continuity of γ on the brane. Specifying (2.12) and (2.13) to (2.10) we have:

c0 = − 3

4π
M3 ω

R
coth

(

ω
π

2

)

, (2.17)

c = − 1

4π
M3 ω

R

[

tanh
(

ω
π

2

)

+ 2coth
(

ω
π

2

)]

, (2.18)

cθ = 0 . (2.19)

Eqs. (2.17) and (2.18) relate the energy-density and the pressure of the singular brane to the bulk
cosmological constant Λ (via ω), the size of the extra dimension R and the fundamental scale of
gravity M . With the above relations (2.17)-(2.19) we can now interpret (2.10) as a solution to
the Einstein equations (2.5)-(2.7) in the sense of distributions. Also the stress-energy conservation
constraint (2.8) is satisfied based on the identity δ(x) sign(x) = 0 again in the distributional sense.

Note that c0/c → 1 in the limit ω → ∞. Moreover, for larger and larger values of ω, c0 and c
approach the brane tension of the Randall-Sundrum II model and the above eqs. (2.17) and (2.18)
merge to the equivalent relation in the Randall-Sundrum II case. This is no surprise since taking
the limit ω → ∞ corresponds to inflating and flattening the 3-brane so that we expect to recover
the case of the flat Randall-Sundrum II brane.

We finish this section by the discussion of some physical properties of our manifold. We first
observe that its spatial part is homeomorphic to a 4-sphere S4. This is obvious from the metric
(2.1) and the explicit expression for γ given in (2.10). Geometrically, however, our manifold differs
from S4 due to the high anisotropy related to the smallness of the extra dimension. The ratio of
typical distance scales in the bulk and on the brane is given by

R

RU
=

ω

sinh
(

ωπ
2

) . (2.20)

It is now clear that the above ratio (2.20) can only be made very small in the case of real ω (AdS-
space-time). For the size of the observable universe we take the lower bound RU > 4Gpc ∼ 1028 cm
while the size of the extra dimension is limited from above [31]: R < 10−2 cm, leaving us with
ω > 50.

Finally we would like to point out a very peculiar property of the manifold under consideration:
as it can immediately be deduced from the line element (2.1) and (2.10), any two points on the
brane are separated by not more than a distance of the order of R regardless of their distance as
measured by an observer on the brane using the induced metric.

3 Geodesics

It is well known that the Randall Sundrum-II model is timelike and lightlike geodesically incom-
plete [16, 17, 18] which means that there exists inextendible timelike and lightlike geodesics.3 An

3For a precise definition of a geodesically incomplete space see e.g. [32].
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inextendible geodesic is a geodesic parametrized by an affine parameter τ such that by using up
only a finite amount of affine parameter the geodesic extends over infinite coordinate distances. In
a more physical language one could reformulate the above statement by saying that it takes only
a finite amount of affine parameter τ in order to reach the infinities of the incomplete space-time.
As we will illustrate later in this chapter, the reason why the Randall-Sundrum II setup ceases to
be geodesically complete is simply due to a specific way of gluing two patches of AdS5. One of the
main motivations for this work was to provide an alternative to the Randall Sundrum II model that
has the advantage of being geodesically complete while conserving the pleasant phenomenological
features of the latter. We divide the discussion of geodesics in two parts: in subsection 3.1 we illus-
trate the effects of incomplete geodesics in the Randall-Sundrum II setup for timelike and lightlike
geodesics. In the following subsection 3.2 we demonstrate why our setup is geodesically complete
by looking at corresponding geodesics. Finally, we complement the discussions by illustrating the
physics with the use of the Penrose-diagram of (the universal covering space-time of) AdS5.

3.1 Geodesics in the Randall-Sundrum II setup

Our discussion of geodesics in this chapter is in no sense meant to be complete. Without going
into the details of the computations we merely intend to present the solutions of the geodesic
equations in certain cases. For more general and more complete discussions of this issue we refer
to the literature, see e.g. [17, 33] and references therein. We first consider lightlike geodesics in
the Randall-Sundrum II background metric given in appendix A, eq. (A.1). Let us suppose that a
photon is emitted at the brane at y = 0 in the positive y-direction at coordinate time t = 0 then
reflected at y = y1 at the time t = t1 to be observed by an observer on the brane at time t = t2.
In this situation t corresponds to the proper time of an observer on the brane at rest. A simple
calculation reveals

t2 = 2t1 =
2

k

(

eky1 − 1
)

. (3.1)

A brane bound observer will therefore note that it takes an infinite time for a photon to escape to
y = ∞. However, parameterizing the same geodesic by an affine parameter τ reveals the lightlike
incompleteness of the Randall-Sundrum II space-time. Let the events of emission, refection (at
y = y1) and arrival on the brane again be labeled by τ = 0, τ = τ1 and τ = τ2, respectively. Using
the geodesic equation

d2xµ

dτ2
+ Γµ

νρ

dxν

dτ

dxρ

dτ
= 0 , (3.2)

an easy computation shows:

τ2 = 2τ1 =
2

ck

(

1 − e−ky1

)

. (3.3)

The constant c is a remnant of the freedom in the choice of an affine parameter.4 From the last
equation we see that now

lim
y1→∞

τ1 =
1

ck
, (3.4)

meaning that in order to reach infinity (y = ∞) in the extra dimension it takes only a finite
amount 1/(ck) of affine parameter τ , the expression of incompleteness of the Randall-Sundrum II
space-time with respect to affinely parametrized lightlike geodesics.

4In general, two affine parameters λ and τ are related by λ = cτ + d, since this is the most general transformation
leaving the geodesic equation (3.2) invariant. The choice of the origin of time to coincide with the emission of the
photon only fixes d but does not restrict c.
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In the case of timelike geodesics the inconsistency is even more striking. As shown in e.g. [18], a
massive particle starting at the brane with vanishing initial velocity travels to y = ∞ in finite proper
time given by τp = π/(2k) while for a brane-bound observer this happens in an infinite coordinate
time. To summarize, the Randall-Sundrum II brane-world model is geodesically incomplete both
for null and for timelike geodesics. As we will see in the next section, the geodesic incompleteness
is a direct consequence of the use of a particular coordinate system in AdS5, the so-called Poincaré-
coordinate system, which covers only a part of the full AdS5 space-time. We will also see that the
problem of incomplete geodesics is absent in the setup we propose in this paper.

3.2 Geodesics in the background (2.1) and Penrose-diagram

We would now like to answer similar questions to the ones considered in the previous section for the
background (2.1). For example, we would like to know what time it takes for light to travel from
the brane (at θ=0) in the θ-direction to a given point in the upper hemisphere with θ coordinate
θ1, to be reflected and to return to the brane. As in the last section, t and τ will denote the
coordinate time (proper time of a stationary observer on the brane) and the affine parameter used
for parameterizing the geodesics, respectively. Again we choose t = 0 (τ = 0) for the moment of
emission, t1 (τ1) for the reflection and t2 (τ2) for the time where the photon returns to the brane.
Due to the enormous hierarchy of distance scales in our model, one might wonder whether photons
(or gravitons) are able to carry information from an arbitrary point on the brane to any other point
on the brane connected to the first one by a null-geodesic in the extra dimension. For an observer
on the brane such a possibility would be interpreted as 4-dimensional causality-violation. However,
as we will see in the following, none of these possibilities exist in our model. Omitting all details
we find

t2 = 2t1 = 4RU coth
(ωπ

2

)

arctan

[

sinh(ωθ1
2 )

cosh
[

ω
2 (π − θ1)

]

]

, (3.5)

so that an observer on the brane will see that the photon reaches the “north pole” θ1 = π/2 at
finite time

t1 = RU coth
(ωπ

2

)

arctan
[

sinh
(ωπ

2

)]

≈ RU
π

2
. (3.6)

Note that due to the warped geometry, it is RU entering the last relation and not R, so that even
though the physical distance to the “north pole” is of the order of R it takes a time of the order
of RU for photons to reach it, excluding causality violation on the brane as discussed above. If the
same geodesic is parametrized using an affine parameter we obtain

τ2 = 2τ1 =
2

c

R

ω

[

tanh
(ωπ

2

)

− sinh
[
ω
(

π
2 − θ1

)]

cosh ωπ
2

]

, (3.7)

such that the amount of affine parameter needed to reach θ1 = π/2 starting from the brane is:

∆τ =
1

c

R

ω
tanh

(ωπ

2

)

≈ 1

c

R

ω
. (3.8)

Here again c reflects the freedom in the choice of the affine parameter.
The results formally resemble those of the Randall-Sundrum II case. However, the important

difference is that in our case each geodesic can trivially be extended to arbitrary values of the affine
parameter, a simple consequence of the compactness of our space. Once the photon reaches the point
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θ = 0 it continues on its geodesic, approaching the brane, entering the southern “hemisphere”, etc.
It is clear that it needs an infinite amount of affine parameter in order to travel infinite coordinate
distances. Therefore, the null geodesics in our setup which are the analogues of the incomplete null
geodesics in the Randall-Sundrum II setup turn out to be perfectly complete due to the compactness
of our space. The situation for timelike geodesics is fully analog to the case of the null geodesics.

To end this section about the geometric properties of our model we would like to discuss the
conformal structure of our space-time and point out differences to the Randall-Sundrum II setup.
Let us review briefly the basic properties of AdS5 space-time to the extend that we will need it in
the following discussion.5 AdS5 space-time can be thought of as the hyperboloid defined by

X2
0 +X2

5 −X2
1 −X2

2 −X2
3 −X2

4 = a2 (3.9)

embedded in a flat space with metric

ds2 = −dX2
0 − dX2

5 + dX2
1 + dX2

2 + dX2
3 + dX2

4 , (3.10)

a being the so-called AdS-radius. The global coordinates of AdS5 are defined by

X0 = a coshχ cos τ, X5 =a coshχ sin τ,

X1 = a sinhχ cosϕ1, X2 =a sinhχ sinϕ1 cosϕ2,

X3 = a sinhχ sinϕ1 sinϕ2 cosϕ3, X4 =a sinhχ sinϕ1 sinϕ2 sinϕ3, (3.11)

where the coordinates are confined by 0 ≤ χ, −π ≤ τ ≤ π, 0 ≤ ϕ1 ≤ π, 0 ≤ ϕ2 ≤ π, 0 ≤ ϕ3 ≤ 2π
and τ = −π is identified with τ = π. These coordinates cover the full hyperboloid exactly once.
Allowing τ to take values on the real line without the above identification of points gives the
universal covering space CAdS5 of AdS5.

6 In these coordinates, the line element (3.10) can be
written:7

ds2 = a2
(
− cosh2 χ dτ2 + dχ2 + sinh2 χ dΩ2

3

)
. (3.12)

Another coordinate system can be defined by

X0 =
1

2u

[
1 + u2

(
a2 + ~x2 − t̄ 2

)]
, X5 =au t̄,

Xi = auxi, i = 1, 2, 3 , X4 =
1

2u

[
1 − u2

(
a2 − ~x2 + t̄ 2

)]
, (3.13)

with u > 0, t̄ ∈ (−∞,∞) and xi ∈ (−∞,∞). In these Poincaré coordinates the line element (3.10)
takes the form

ds2 = a2

[
du2

u2
+ u2

(
−dt̄ 2 + d~x2

)
]

. (3.14)

In contrast to the global coordinates, the Poincaré coordinates do not cover the whole of the AdS5

and CAdS5 space-times [34]. From (3.14), after changing coordinates according to dy = −a du/u
and rescaling t and xi by the AdS-radius a we recover the original Randall-Sundrum II coordinate

5We mainly follow [34].
6Whenever we used the word AdS5 so far in this paper we actually meant CAdS5. For reasons of clarity, however,

we will brake with this common practice in the rest of this section.
7It is obvious that the metric (2.1) for 0 ≤ θ ≤ π/2 (−π/2 ≤ θ ≤ 0) reduces to the above line-element (3.12) under

the following coordinate transformation: χ = ω(π
2
∓ θ), τ = tω/

[
R cosh

(
ωπ
2

)]
, together with a = R/ω.
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system given in (A.1). The restrictions on y in the Randall-Sundrum II setup further limit the
range covered by their coordinate system to the 0 < u ≤ 1 domain of the Poincaré coordinates.

Coming back to the global coordinates, we introduce ρ by

tan ρ = sinhχ with 0 ≤ ρ <
π

2
, (3.15)

so that (3.12) becomes

ds2 =
a2

cos2 ρ

(
−dτ2 + dρ2 + sin2 ρ dΩ2

3

)
. (3.16)

The Penrose-diagrams of AdS5 space-time and its universal covering space-time CAdS5 are
shown in Fig. 2, see [35, 36]. While the AdS5 space-time contains closed timelike curves (denoted

τ = −

π

2

τ = 0

τ = π

2

τ = π

γ

τ = 3π

2

τ = 2π

τ = − 3π

2

τ = −π

γ

ρ = 0

(ϕ1 = π)

ρ = π

2

(ϕ1 = 0)

ρ = π

2

ρ = π

2

(ϕ1 = π)

ρb ρ = π

2
ρ = 0

(ϕ1 = 0)

I II I

Figure 2: Penrose diagram of AdS5 space and its universal covering space CAdS5

by γ in the figure), its universal covering space-time CAdS5 does not. The arrows in the left
diagram indicate that the lines τ = −π and τ = π should be identified. The symbol I stands for
the timelike surface ρ = π/2 (spatial infinity). It is this surface which is responsible for the absence
of a Cauchy-surface in AdS-space. We will concentrate in the following on the CAdS5 diagram.
First we note that each point in the diagram corresponds to a 3-sphere. The shaded region indicates
the patch covered by the Poincaré (and Randall-Sundrum) coordinates. Note that the position of
the Randall-Sundrum brane cannot be represented in a simple way in the Penrose diagram of
CAdS5. The reason is that the u = const. hypersurfaces of the Poincaré coordinates generate
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a slicing of flat 4-dimensional Minkowski space-times while the points in the diagram represent
(curved) 3-spheres. From the Penrose diagram it is immediately clear that the Randall-Sundrum-II
space-time is geodesically incomplete. The timelike curves denoted by γ emanating from the origin
(ρ = 0, τ = 0) will all eventually exit the shaded region after a finite coordinate time τ . These
geodesics appear inextendible from the point of view of the Randall-Sundrum space-time. The
problems arise due to the arbitrary cutting of a space-time along the borders of a given coordinate
patch which covers only a part of the initial space-time. Similar conclusions can be drawn for null
geodesics, represented by lines making angles of 45 degrees with the vertical lines in Fig. 2. The
vertical dotted line with topology R × S3 at coordinate ρb = arctan

[
sinh

(
ωπ
2

)]
close to ρ = π/2

in the right diagram corresponds to the location of our curved three brane, τ being proportional
to our time coordinate t (see footnote 7). We note that since ω > 50, this line is drawn by far too
distant from ρ = π/2 as a simple expansion shows:

ρb = arctan
[

sinh
(ωπ

2

)]

∼ π

2
− 2e−

ωπ
2 + O(e−

3ωπ
2 ) . (3.17)

The slice of CAdS5 to the right of ρb (ρb ≤ ρ ≤ π/2) is discarded and replaced by another copy of
the slice to the left of ρb (0 ≤ ρ ≤ ρb).

From the Penrose diagram we can also deduce that our space-time is geodesically complete.
Timelike geodesics (emanating from (ρ = 0, τ = 0)) cross the brane ρb at some point or return to
the origin depending on the initial velocities of the particles that define them. In both cases (as in
the case of null geodesics) there is no obstacle to extend the affine parameter to larger and larger
values.

As we already mentioned, the absence of a Cauchy surface in CAdS-space-time is due to the
existence of the timelike surface I at spatial infinity. By construction, our space-time excludes
I so that the natural question arises whether it is legitimate to revert the above argument and
conclude the existence of a Cauchy surface in our model. Though interesting, we do not intend to
elaborate this question any further in this paper.

4 Gravity localization on the brane

There are at least two equivalent ways of addressing the problem of the localization of gravity in
brane-world scenarios. Both ways have their advantages and disadvantages. The first way is based
on a detailed study of the Kaluza-Klein excitations of the graviton. After integrating out the extra
dimension(s) one obtains an effective 4 dimensional Lagrangian involving the full tower of Kaluza-
Klein gravitons. Considering the low energy scattering process of two test particles on the brane
via exchange of Kaluza-Klein excitations allows to relate the non-relativistic scattering amplitude
to the static potential felt by the two test particles. Since the coupling of each individual Kaluza-
Klein particle to matter on the brane is proportional to the value of its transverse wave-function
at the position of the brane, this approach necessitates a proper normalization of all Kaluza-Klein
modes. An advantage of this approach is the possibility of distinguishing between the contributions
to the potential coming from the zero mode (Newton’s law) and from the higher modes (corrections
thereof).

The second approach is based on a direct calculation of the graviton two-point function in the
space-time under consideration, having the obvious advantage of bypassing all technicalities related
to the Kaluza-Klein spectrum and the wave-function normalization. However, a physical interpre-
tation of the effects of individual Kaluza-Klein modes from the point of view of a 4-dimensional
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observer is, to say the least, not straightforward. Finally, due to the equivalence of the two ap-
proaches it is clearly possible to fill this gap by reading of the Kaluza-Klein spectrum and the
(normalized) wave-functions from the two-point function by locating its poles and determining
corresponding residues.

In the setup considered in this paper we choose to work in the second approach, the direct
evaluation of the Green’s functions, due to additional difficulties arising from the non-Minkowskian
nature of the induced metric on the brane. The lack of Poincaré invariance on the brane clearly
implies the absence of this symmetry in the effective 4-dimensional Lagrangian as well as non-
Minkowskian dispersion relations for the Kaluza-Klein modes.

4.1 Perturbation equations and junction conditions

We would like to study the fluctuations Hij of the metric in the background (2.1) defined by:

ds2 = −σ2dt2 +R2
Uγ

2 [ηij + 2Hij] dϕ
idϕj +R2dθ2. (4.1)

Hij transform as a transverse, traceless second-rank tensor with respect to coordinate transforma-
tions on the maximally symmetric space with metric ηij, a 3-sphere in our case:

ηijHij = 0, ηij∇̃iHjk = 0, (4.2)

where ∇̃ denotes the covariant derivative associated with the metric ηij on S3. The gauge invariant
symmetric tensor Hij does not couple to the vector and scalar perturbations. Its perturbation
equation in the bulk is obtained from the transverse traceless component of the perturbed Einstein
equations in 5 dimensions:

δRMN − 2

3
ΛδgMN = 0 . (4.3)

Specifying this equation to the case of interest of a static background we find:

1

σ2
Ḧ − 1

R2
Uγ

2
∆̃Hij −

1

R2
H ′′

ij −
1

R2

(
σ′

σ
+ 3

γ′

γ

)

H ′
ij +

2

R2
Uγ

2
Hij = 0, (4.4)

where ∆̃ denotes the Laplacian on S3. The last equation is valid in the bulk in the absence of
sources. We can now conveniently expand Hij in the basis of the symmetric transverse traceless

tensor harmonics T̂
(lλ)
ij on S3 [37, 38, 39]:

Hij =

∞∑

l=2

∑

λ

Φ(lλ)(t, θ)T̂
(lλ)
ij , (4.5)

where the T̂
(lλ)
ij satisfy

∆̃T̂
(lλ)
ij + k2

l T̂
(lλ)
ij = 0, k2

l = l(l + 2) − 2, l = 2, 3, ...

ηij∇̃iT̂
(lλ)
jk = 0, ηij T̂

(lλ)
ij = 0, T̂

(lλ)
[ij] = 0. (4.6)

The sum over λ is symbolic and replaces all eigenvalues needed to describe the full degeneracy of
the subspace of solutions for a given value of l. Introducing the expansion (4.5) into (4.4) and using
the orthogonality relation of the tensor harmonics [38]

∫ √
η ηik ηjl T̂

(lλ)
ij T̂

(l′λ′)
kl d3ϕ = δll′ δλλ′

, (4.7)
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we obtain:
1

σ2
Φ̈(lλ) − 1

R2
Φ(lλ)′′ − 1

R2

(
σ′

σ
+ 3

γ′

γ

)

Φ(lλ)′ +
l(l + 2)

R2
Uγ

2
Φ(lλ) = 0. (4.8)

This equation has to be compared to the equation of a massless scalar field in the background (2.1).
After expanding the massless scalar in the corresponding scalar harmonics on S3 we recover (4.8)
with the only difference in the eigenvalue parameters due to different spectra of the Laplacian ∆̃ for
scalars and for tensors. Motivated by this last observation and in order to avoid the technicalities
related to the tensorial nature of the graviton Hij we confine ourselves in this paper to the study
of the Green’s functions of a massless scalar field in the background (2.1).

The differential equation (4.8) alone does not determineHij uniquely. We have to impose proper
boundary conditions for Hij. While imposing square integrability will constitute one boundary
condition at θ = ±π/2, the behavior of Hij on the brane will be dictated by the Israel junction
condition [40]:

: Kµν : = − 8π

M3

(

Tµν − 1

3
T κ

κ ḡµν

)

. (4.9)

Here Kµν and ḡµν denote the extrinsic curvature and the induced metric on the brane, respectively.
Tµν is the 4-dimensional stress-energy tensor on the brane8 and the symbol : . . . : is defined in
(2.15). In our coordinate system the extrinsic curvature is given by:

Kµν =
1

2R

∂ḡµν

∂θ
. (4.10)

Hence, the non-trivial components of the Israel condition become:

:
σ′

σ
: = −8πR

M3

(
2

3
c0 − c

)

, (4.11)

:
γ′

γ
(ηij + 2Hij) +H ′

ij : =
8πR

3M3
c0 (ηij + 2Hij) . (4.12)

Separating the background from the fluctuation in (4.12) we find:

:
γ′

γ
: =

8πR

3M3
c0 , (4.13)

: H ′
ij : = 0 , (4.14)

where we only used the continuity of Hij on the brane. While eq. (4.13) directly coincides with
eq. (2.12) of section (2.3), eq. (4.11) turns out to be a linear combination of (2.12) and (2.13).

Eq. (4.14) taken alone implies the continuity of H ′
ij on the brane. If in addition the fluctuations

are supposed to satisfy the θ → −θ symmetry, this condition reduces to a Neumann condition, as
for example in our treatment of the scalar two-point function in the Randall-Sundrum II case (see
appendix A).

In the next section we are going to find the static Green’s functions of a massless scalar field in
the Einstein static universe background. This will serve as a preparatory step for how to handle the
more complicated case of a non-invertible Laplacian. More importantly, it will provide the necessary
reference needed for the interpretation of the effect of the extra dimension on the potential between
two test masses on the brane.

8 T 0
0 = c0, and T i

j = δi
jc in the notation of section (2.3).
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4.2 Gravity in the Einstein static universe

As announced in the previous section, we will concentrate on the massless scalar field. Our aim
is to solve the analog of Poisson equation in the Einstein static universe background. Due to its
topology R × S3 we will encounter a difficulty related to the existence of a zero eigenvalue of the
scalar Laplacian on S3 necessitating the introduction of a modified Green’s function.9 Note that
in the more physical case where the full tensor structure of the graviton is maintained no such step
is necessary since all eigenvalues of the tensorial Laplacian are strictly negative on S3, see (4.6).

4.2.1 Definition of a modified Green’s function

We take the metric of Einstein’s static universe in the form:

ds2 = gµνdx
µdxν = −dt2 +A2dΩ2

3 (4.15)

with dΩ2
3 being the line element of a 3-sphere given in (2.2) and A being its constant radius. The

equation of a massless scalar field then becomes:

1√−g∂µ

[√−g gµν∂νu(t, ~x)
]

= j(t, ~x) (4.16)

which in the static case reduces to

Du(~x) ≡ 1

A2
∆̃u(~x) = j(~x) , (4.17)

where ∆̃ is the scalar Laplacian on S3 and we choose to write ~x for the collection of the three angles
on S3. All functions involved are supposed to obey periodic boundary condition on S3 so that in
Green’s identity all boundary terms vanish:

∫ √
−g (D v(~x)) u(~x) d3~x =

∫ √
−g v(~x)D u(~x) d3~x =

∫ √
−g v(~x) j(~x) d3~x . (4.18)

Here and in the following bars denote complex conjugate quantities. The operator D trivially allows
for an eigenfunction with zero eigenvalue (the constant function on S3):

Du0(~x) = 0 ,

∫ √−g u0(~x)u0(~x) d
3~x = 1 . (4.19)

Then, since the homogeneous equation has not only the trivial solution (u = 0) which satisfies
the periodic boundary conditions in the angular variables, the operator D cannot be invertible.
Therefore, there is no solution to the equation (4.17) for an arbitrary source. In order to still define
a “modified” Green’s function we have to restrict the possible sources to sources that satisfy the
following solvability condition:

∫ √−g j(~x) ū0(~x) d
3~x = 0. (4.20)

Formally this condition can be obtained by replacing v(~x) by the non-trivial solution of the homo-
geneous equation u0(~x) in (4.18). We now define the modified Green’s function as a solution of

DxG(~x, ~x′) =
δ3(~x− ~x′)√−g − u0(~x) ū0(~x

′) . (4.21)

9For an elementary introduction to the concept of modified Green’s functions see e.g [41].
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Replacing now v(~x) by G(~x, ~x′) in Green’s identity (4.18) we obtain (after complex conjugation)
the desired integral representation for the solution of (4.17):

u(~x) = Cu0(~x) +

∫ √
−g j(~x′)G(~x′, ~x) d3~x′ , (4.22)

where C is given by

C =

∫ √−g u(~x′)u0(~x
′) d3~x′ . (4.23)

Note that the source

j0(~x) =
δ3(~x− ~x′)√−g − u0(~x)ū0(~x

′) (4.24)

trivially satisfies the solvability condition (4.20) and represents a point source at the location ~x = ~x′

compensated by a uniform negative mass density. To fix the normalization of u0(~x) we write:

u0(~x) = N0Φ100(~x) with

∫ √
ηΦ100(~x)Φ100(~x)d3~x = 1, (4.25)

where Φ100 = 1
π
√

2
and so

∫ √−g u0(~x)u0(~x) d
3~x = |N0|2A3

∫ √
ηΦ100(~x)Φ100(~x) d3~x

︸ ︷︷ ︸

=1

= |N0|2A3 = 1 , (4.26)

so that

u0(~x) =
1

A3/2
Φ100(~x). (4.27)

In order to solve the differential equation (4.21) defining the modified Green’s function G(~x, ~x′), we
expand in eigenfunctions of the Laplace operator on S3, the so-called scalar harmonics Φλlm with
properties (see e.g. [42, 43]):

∆̃Φλlm = (1 − λ2)Φλlm λ = 1, 2, . . . ; l = 0, . . . , λ− 1;m = −l, . . . , l . (4.28)

Our ansatz therefore reads:

G(~x, ~x′) =

∞∑

λ=1

λ−1∑

l=0

l∑

m=−l

Φλlm(~x) cλlm(~x′) . (4.29)

Introducing this in (4.21) we obtain

∞∑

λ=1

λ−1∑

l=0

l∑

m=−l

[

−λ
2 − 1

A2
cλlm(~x′)

]

Φλlm(~x) =
δ3(~x− ~x′)√−g − u0(~x)u0(~x

′) . (4.30)

If we now multiply by Φλ′l′m′(~x)
√
η and integrate over S3 we find

−λ
′2 − 1

A2
cλ′l′m′(~x′) =

1

A3
Φλ′l′m′(~x′) − ū0(~x

′)
∫

S3

√
η u0(~x)Φλ′l′m′(~x) d3~x, (4.31)
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where we made use of the orthogonality relation of the scalar harmonics
∫ √

ηΦλlm(~x)Φλ′l′m′(~x) d3~x = δλλ′δll′δmm′ . (4.32)

In the case λ′ = 1 (and vanishing l′ and m′) the above equation is identically satisfied for all values
of c100(~x

′).10

In the case λ′ 6= 1 the coefficient cλ′l′m′(~x′) follows to be

cλ′l′m′(~x′) =
Φλ′l′m′(~x′)
A(1 − λ′2)

(4.33)

so that the formal solution for the modified Green’s function can be written as

G(~x, ~x′) =
∞∑

λ=2

λ−1∑

l=0

l∑

m=−l

Φλlm(~x)Φ̄λlm(~x′)
A(1 − λ2)

. (4.34)

Due to the maximal symmetry of the 3-sphere, the Green’s function G(~x, ~x′) can only depend on
the geodesic distance s(~x, ~x′) ∈ [0, π] between the two points ~x and ~x′:

cos s = cosϕ1 cosϕ′
1 + sinϕ1 sinϕ′

1 cos β ,

cos β = cosϕ2 cosϕ′
2 + sinϕ2 sinϕ′

2 cos(ϕ3 − ϕ′
3) , (4.35)

which in the case ϕ2 = ϕ′
2 and ϕ3 = ϕ′

3 clearly reduces to s = ϕ1 −ϕ′
1. Indeed, the sum over l and

m can be performed using11

λ−1∑

l=0

l∑

m=−l

Φ̄λlm(~x)Φλlm(~x′) =
λ

2π2

sin (λs)

sin s
(4.36)

such that even the remaining sum over λ can be done analytically:

G̃(s) ≡ G(~x, ~x′) =
1

8π2A
− 1

4πA

[

(1 − s

π
) cot s

]

, s ∈ [0, π] . (4.37)

To interpret this result, we develop G̃(s) around s = 0 obtaining12

G̃(s) =
1

A

[

− 1

4πs
+

3

8π2
+

s

12π
+ O(s2)

]

. (4.38)

By introducing the variable r = sA and by treating G̃(s) as a gravitational potential we find

1

A

dG̃(s)

ds
=

1

4πr2
+

1

12πA2
+ O(r/A3). (4.39)

We notice that for short distances, r ≪ A, we find the expected flat result whereas the corrections
to Newton’s law become important at distances r of the order of A in the form of a constant
attracting force.13

10This means that we have the freedom to choose c100(~x
′) freely. Our choice is c100(~x

′) = 0 without restricting
generality since from eq. (4.22) we immediately conclude that for sources satisfying (4.20) there will never be any
contribution to u(~x) coming from c100(~x

′).
11See e.g. [43].
12Note that the constant term in the expansion (4.38) is specific to our choice of c100(~x

′).
13There exists numerous articles treating the gravitational potential of a point source in Einstein’s static universe

(see [44, 45] and references therein). We only would like to point out here similarities between our result (4.37) and
the line element of a Schwarzschild metric in an Einstein static universe background given in [44].

15



4.3 Modified Green’s function of a massless scalar field in the background space-
time (2.1)

We are now prepared to address the main problem of this work namely the computation of the
modified Green’s function of a massless scalar field in the background space-time (2.1). Since our
main interest focuses again on the low energy properties of the two-point function, we will limit
ourselves to the static case. The main line of reasoning is the same as in the previous section. Due
to the fact that our space has the global topology of a 4-sphere S4, we again are confronted with
a non-invertible differential operator. We would like to solve

Du(ϕi, θ) ≡
∆̃u(ϕi, θ)

R2
Uγ(θ)

2
+

1

R2

1

σ(θ)γ(θ)3
∂

∂θ

[

σ(θ)γ(θ)3
∂u(ϕi, θ)

∂θ

]

= j(ϕi, θ) , (4.40)

where the independent angular variable ranges are 0 ≤ ϕ1 ≤ π; 0 ≤ ϕ2 ≤ π; 0 ≤ ϕ3 ≤ 2π; −π/2 ≤
θ ≤ π/2. Every discussion of Green’s functions is based on Green’s identity relating the differential
operator under consideration to its adjoint operator. Since D is formally self-adjoint we have

π∫

0

dϕ1

π∫

0

dϕ2

2π∫

0

dϕ3

π
2∫

−π
2

dθ
√−g

[

(Dv)u− v(Du)
]

=

π∫

0

dϕ1

π∫

0

dϕ2

2π∫

0

dϕ3
R3

U

R

√
η

[

σ(θ)γ(θ)3
(

ū
∂v

∂θ
− ∂ū

∂θ
v

)] π
2

−π
2

+ . . . , (4.41)

where we dropped the arguments of u and v for simplicity. The dots in (4.41) refer to boundary
terms in the variables ϕi and since we again employ an eigenfunction expansion in scalar harmonics
on S3, these boundary terms will vanish. In order to find an integral representation of the solution
u(ϕi, θ) of (4.40) we have to impose appropriate boundary conditions on u and v at θ = ±π/2. For
the time being we assume this to be the case such that all boundary terms in (4.41) vanish and
proceed with the formal solution of (4.40). We will address the issue of boundary conditions in θ
in detail in appendices A and B.

In the following we will collectively use x instead of (ϕi, θ). The homogeneous equation
Du(x) = 0 does not have a unique solution under the assumption of periodic boundary condi-
tions. In addition to the trivial solution (u = 0) we also find

D u0(x) = 0 ,

∫ √−g u0(x)u0(x) d
4x = 1 . (4.42)

Therefore, the corresponding inhomogeneous equation (4.40) does not have a solution unless we
again restrict the space of allowed sources:

∫ √−g j(x)u0(x) d
4x = 0. (4.43)

As in the last section, this condition can be obtained by replacing v by the non-trivial solution of
the homogeneous equation u0 in (4.41). We now define the modified Green’s function by

DxG(x, x′) =
δ4(x− x′)√−g − u0(x)u0(x

′) . (4.44)
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From Green’s identity (4.41), with v(x) given by G(x, x′), we again obtain after complex conjugation
the desired integral representation:

u(x) = Cu0(x) +

∫ √−g j(x′)G(x′, x) d4x′ , (4.45)

with

C =

∫ √−g u(x′)u0(x
′) d4x′ . (4.46)

As before, the source

j0(x) =
δ4(x− x′)√−g − u0(x)u0(x

′) (4.47)

satisfies the solvability condition (4.43) by construction. The normalization of the constant mode
u0(x) is slightly more involved than before due to the nontrivial measure σ(θ)γ(θ)3 in the θ inte-
gration. By inserting

u0(x) = N0Φ100(ϕi)χ1(θ) with χ1(θ) = 1 (4.48)

in the integral in (4.42) we obtain

N0 =

[

2ω

RR3
U tanh

(
ωπ
2

)

] 1
2

. (4.49)

For the solution of eq. (4.44) we use the ansatz

G(ϕi, ϕ
′
i, θ, θ

′) =

∞∑

λ=1

λ−1∑

l=0

l∑

m=−l

Φλlm(ϕi) cλlm(ϕ′
i, θ, θ

′) , (4.50)

where from now on we decide to write all arguments explicitly. After inserting this in (4.44) we
find

∞∑

λ=1

λ−1∑

l=0

l∑

m=−l

[

− λ2 − 1

R2
Uγ(θ)

2
cλlm(ϕ′

i, θ, θ
′) +

1

R2

1

σ(θ)γ(θ)3
∂

∂θ

(

σ(θ)γ(θ)3
∂cλlm(ϕ′

i, θ, θ
′)

∂θ

)]

Φλlm(ϕi)

=
δ3(ϕi − ϕ′

i) δ(θ − θ′)√−g − u0(ϕi, θ)u0(ϕ
′
i, θ

′). (4.51)

After multiplication by
√
ηΦλ′l′m′(ϕi) and integration over S3 we obtain

− λ′2 − 1

R2
Uγ(θ)

2
cλ′l′m′(ϕ′

i, θ, θ
′) +

1

R2

1

σ(θ)γ(θ)3
∂

∂θ

[

σ(θ)γ(θ)3
∂cλ′l′m′(ϕ′

i, θ, θ
′)

∂θ

]

(4.52)

=
1

R3
UR

1

σ(θ)γ(θ)3
δ(θ − θ′)Φλ′l′m′(ϕ′

i) − u0(ϕ
′
i, θ

′)
∫

S3

√
η u0(ϕi, θ)Φλ′l′m′(ϕi) d

3ϕi .

We now have to distinguish the cases λ′ = 1 and λ′ 6= 1.
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1. (λ′l′m′) = (100).

In this case, the last term on the right hand side of (4.52) will give a non-vanishing contribu-
tion:

1

R2

1

σ(θ)γ(θ)3
∂

∂θ

[

σ(θ)γ(θ)3
∂c100(ϕ

′
i, θ, θ

′)
∂θ

]

=
1

R3
UR

1

σ(θ)γ(θ)3
δ(θ − θ′)Φ100(ϕ

′
i)− (4.53)

|N0|2Φ̄100(ϕ
′
i)χ1(θ)χ1(θ

′)
∫

S3

√
ηΦ100(ϕi)Φ100(ϕi) d

3ϕi

︸ ︷︷ ︸

=1

.

By defining g(1)(θ, θ′) by the relation

c100(ϕ
′
i, θ, θ

′) =
1

R3
UR

Φ̄100(ϕ
′
i)g

(1)(θ, θ′) (4.54)

we obtain the following differential equation for g(1)(θ, θ′):

1

R2

1

σ(θ)γ(θ)3
∂

∂θ

[

σ(θ)γ(θ)3
∂g(1)(θ, θ′)

∂θ

]

=
1

σ(θ)γ(θ)3
δ(θ − θ′) − χ̃1(θ) ¯̃χ1(θ

′) , (4.55)

where we used

χ̃1(θ) ≡
[

2ω

tanh
(

ωπ
2

)

] 1
2

χ1(θ) , (χ1(θ) ≡ 1) . (4.56)

Note that we defined χ̃1(θ) in such a way that

π
2∫

−π
2

σ(θ)γ(θ)3χ̃1(θ) ¯̃χ1(θ)dθ = 1. (4.57)

2. (λ′l′m′) 6= (100).

Due to the orthogonality of Φ100 and Φλ′l′m′ on S3, the last term on the right hand side of
(4.52) vanishes. We therefore have

− λ′2 − 1

R2
Uγ(θ)

2
cλ′l′m′(ϕ′

i, θ, θ
′) +

1

R2

1

σ(θ)γ(θ)3
∂

∂θ

[

σ(θ)γ(θ)3
∂cλ′l′m′(ϕ′

i, θ, θ
′)

∂θ

]

=
1

R3
UR

1

σ(θ)γ(θ)3
δ(θ − θ′)Φ̄λ′l′m′(ϕ′

i) . (4.58)

Introducing g(λ′)(θ, θ′) again via

cλ′l′m′(ϕ′
i, θ, θ

′) =
1

R3
UR

Φ̄λ′l′m′(ϕ′
i)g

(λ′)(θ, θ′) , (4.59)

we see that g(λ′)(θ, θ′) has to satisfy

1 − λ′2

R2
Uγ(θ)

2
g(λ′)(θ, θ′) +

1

R2

1

σ(θ)γ(θ)3
∂

∂θ

[

σ(θ)γ(θ)3
∂g(λ′)(θ, θ′)

∂θ

]

=
δ(θ − θ′)
σ(θ)γ(θ)3

. (4.60)
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Combining the above results for λ = 1 and λ 6= 1 we are able to write the formal solution of
(4.44) as

G(ϕi, ϕ
′
i, θ, θ

′) =
1

R3
UR

∞∑

λ=1

λ−1∑

l=0

l∑

m=−l

Φλlm(ϕi)Φ̄λlm(ϕ′
i)g

(λ)(θ, θ′) . (4.61)

We obtain a further simplification of this formal solution by employing the spherical symmetry
on S3, see eq. (4.36), leaving us with a representation of the two-point function by a Fourier sum,
which is natural for a compact space without boundaries:

G̃(s, θ, θ′) = G(ϕi, ϕ
′
i, θ, θ

′) =
1

RR3
U

∞∑

λ=1

λ

2π2

sin(λs)

sin s
g(λ)(θ, θ′) . (4.62)

Finding the formal solution (4.62) was straightforward apart from minor complications inherent
to the use of a modified Green’s function. To solve the differential equations (4.55) and (4.60) by
imposing appropriate boundary conditions again is a routine task without any conceptual difficul-
ties, though slightly technical in nature. Replacing back this solution in (4.62) we are left with a
Fourier sum which at first sight looks intractable, anticipating the fact that the solutions g(λ)(θ, θ′)
(for λ 6= 1) are given by hypergeometric functions. Nevertheless it is possible to extract the desired
asymptotic information from the sum (4.62).

In order not to disturb the transparency and fluidity of the main article we provide large parts of
the technical calculations in four appendices. In appendix A we report similarities and differences
in the evaluation of the two-point functions between our case and the case of Randall-Sundrum,
since the latter served as a guideline for handling the more difficult case under consideration. The
solutions of eqs. (4.55) and (4.60) are presented in appendix B and the evaluation of the Fourier
sum (4.62) at distances exceeding the size of the extra dimension in appendix C. Eventually,
appendix D contains the evaluation of the Fourier sum (4.62) for distances smaller than the extra
dimension. In this way, we can offer the reader less interested in the details of the computations
to have the main results at hand.

From its definition (4.44) we understand that the Green’s function (4.62) can be considered
as the response of the scalar field to the combination of a point-like source located at coordinates
(ϕ′

i, θ
′) and a delocalized, compensating negative contribution. Since we would like to see the

response to a point-like particle on the brane we put θ′ = 0 in eq. (4.62) and explicitly write the
λ = 1 term:

G̃(s, θ, 0) =
g(1)(θ, 0)

2π2RR3
U

+
R

4π2R3
U

1

sin s
S[s, θ, ω] , (4.63)

with S[s, θ, ω] given by (C.1) of appendix C (see also (B.13) of appendix B). The general result for
the sum S[s, 0, ω] obtained in appendix C is

S[s, 0, ω] ≡ lim
θ→0

S[s, θ, ω] = − 2

ω

z(0)
1
2

1 − z(0)

(
π − s

2
cos s− 1

4
sin s

)

− 1

2ω
z(0)−

1
2 ln [1 − z(0)] sin s− 1

ω
z(0)

1
2 lim

θ→0
R[s, θ, ω] , (4.64)

where we have z(0) = tanh2
(

ωπ
2

)
and where we refer to (C.9) for the definition of R[s, θ, ω]. The
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first term in (4.64) is the zero mode contribution14 and we see that it reproduces exactly the 4-
dimensional static Green’s function of Einstein’s static universe given in (4.37). The other two
terms are the contributions from the higher Kaluza-Klein modes.

We first concentrate on the case where s ∼ 1 or what is equivalent r ∼ RU . Since one can easily
convince oneself that R[s, 0, ω] ∼ [1 − z(0)]0 in this regime, the contributions of the higher Kaluza-
Klein modes are strongly suppressed with respect to the zero mode contribution. This means that
as in the case of the Randall-Sundrum-II model it is the zero mode which dominates the behavior of
gravity at distances much larger than the extra dimensions R. The main difference to the Randall-
Sundrum-II case is that the zero mode of our model not only gives rise to the typical 4-dimensional
1/r singularity but also accounts for the compactness of space by reproducing the Einstein static
universe behavior (4.37). This result is somewhat surprising given the extreme anisotropy of our
manifold. Due to the fact that the distances between two arbitrary points on the brane are of the
order of R, one might intuitively expect that the extra dimension can be effective in determining
also the large distance behavior of gravity (on the brane). As we could show by direct calculation
the above expectation turns out to be incorrect.

Next we consider physical distances r much larger than the extra dimension r ≫ R and much
smaller than the observable universe r ≪ RU in which case the results for R[s, 0, ω] can be seen to
be:

R[s, 0, ω] ∼ π

2s2
+
π

2

1 − z(0)

s4

{

8 − 6 ln 2 − 6 ln
[

s [1 − z(0)]−1/2
]}

+ O



[1 − z(0)]2
ln
[

s [1 − z(0)]−1/2
]

s6



 (4.65)

valid for [1 − z(0)]1/2 ≪ s≪ 1. The zero mode contribution (to S[s, 0, ω]) in this regime is simply
the constant obtained by setting s = 0 in the first term of (4.64) so that we obtain:

S[s, 0, ω] ∼ −π
ω

z(0)
1
2

1 − z(0)

{

1 +
1

2s̄2
+

1

s̄4
[4 − 3 ln 2 − 3 ln s̄] + O

(
ln s̄

s̄6

)}

, (4.66)

where we introduced s̄ = s [1 − z(0)]−1/2. Inserting this result in (4.63) and using physical distance
r = RUs instead of s we obtain

G̃(s, 0, 0) =
g(1)(0, 0)

2π2RR3
U

− 1

4πr

ω

R
coth

(ωπ

2

){

1 +
1

2s̄2
+

1

s̄4
[4 − 3 ln 2 − 3 ln s̄] + O

(
ln s̄

s̄6

)}

=

=
g(1)(0, 0)

2π2RR3
U

− 1

4πr

ω

R
coth

(ωπ

2

)
{

1 +
tanh2

(
ωπ
2

)

2r̄2
+

tanh4
(

ωπ
2

)

r̄4
×

×
[

4 − 3 ln 2 − 3 ln

(

r̄

tanh
(

ωπ
2

)

)]

+ O
[

tanh6
(

ωπ
2

)

r̄6
ln

(

r̄

tanh
(

ωπ
2

)

)]}

. (4.67)

14At this point we have to explain what we mean by “zero mode” in this context, since due to the asymmetrically
warped geometry, the spectrum of Kaluza-Klein excitations will not be Lorentz-invariant and strictly speaking,
different excitations cannot be characterized by different 4-dimensional masses. More accurate would be to say that
for a given value of the momentum eigenvalue λ there exists a tower of corresponding Kaluza-Klein excitations with
energies given by Eλ

n with n = 0, 1, . . .. In our use of language the “zero mode branch” of the spectrum or simply the
“zero mode” is defined to be the collection of the lowest energy excitations corresponding to all possible values of λ,
that is by the set

{(
Eλ

0 , λ
)
, λ = 1, 2, . . .

}
. The definition is readily generalized to higher branches of the spectrum.
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Since we would like to compare our result with the corresponding correction in the Randall-Sundrum
II case, we introduced the dimensionless distance variable r̄ = rω/R, the physical distance measured
in units of the AdS-radius, in the last line of the above result. We see that in complete agreement
with the Randall-Sundrum II scenario, our setup reproduces 4-dimensional gravity at large distances
with extremely suppressed corrections. The only remnant effect from the different global topology
manifest itself through the factors of tanh

(
ωπ
2

)
and coth

(
ωπ
2

)
which are very close to 1. We

furthermore emphasize that apart from these deviations, the asymptotic we obtained coincides
exactly with the asymptotic for the case of a massless scalar field in the Randall-Sundrum-II
background, see (A.20) and e.g. [46, 47, 48, 49]. From the factor ω coth

(
ωπ
2

)
/R in eq. (4.67) we

see that also the relation between the fundamental scale M and the Planck-scale MP l gets modified
only by the same factor of tanh

(
ωπ
2

)
:

M2
P l = M3R

ω
tanh

(ωπ

2

)

, (4.68)

where we remind that R/ω is nothing but the AdS-Radius.
Eventually, we treat the case of distances inferior to the extra dimension r ≪ R. After using

the result (D.12) of appendix D in (4.63), a short calculation reveals

G̃(s, 0, 0) =
g(1)(0, 0)

2π2RR3
U

− 1

4π2

1

R2
Us

2 +R2θ2
, (4.69)

a result that has to be compared to the characteristic solution of the Poisson equation in 4-
dimensional flat space. In n-dimensional flat space one has:

∆

[

− 1

(n− 2)VSn−1rn−2

]

= δ(r) , r =

(
n∑

i=1

x2
i

) 1
2

(4.70)

with VSn−1 = 2π
n
2 /Γ[n2 ] denoting the volume of the n− 1 sphere. Specifying to n = 4, we recover

the correct prefactor of −1/4π2 in (4.69) multiplying the 1/r2 singularity.
Finally, we mention that in none of the considered cases we payed any attention to the additive

constant in the two-point function on the brane. The arbitrary constant entering the solution
g(1)(θ, θ′) can always be chosen in such a way that g(1)(0, 0) vanishes on the brane (see appendix B).

5 Conclusions

In this paper we considered a particular brane world model in 5 dimensions with the characteristic
property that the spatial part of the space-time manifold (including the extra dimension) is compact
and has the topology of a 4-sphere S4. Similar to the original Randall-Sundrum II model, the 3-
brane is located at the boundary between two regions of AdS5 space-time. The coordinates of
AdS5 used by Randall and Sundrum are closely related to the so-called Poincaré coordinates of
AdS5. While the extra dimension in this set of coordinates provides a slicing of AdS5 along flat
4-dimensional Minkowski sections (resulting in a flat Minkowskian induced metric on the brane),
their disadvantage is that they do not cover the whole of AdS5 space-time.

The coordinates we used in this paper are the global coordinates of AdS5 known to provide a
global cover of the AdS5 space-time. In this case the “extra” dimension labels different sections

21



with intrinsic geometry R × S3, the geometry of Einsteins static universe. The induced metric on
the 3-brane in our setup is therefore also given by R × S3.

As we illustrated with the use of the Penrose-diagram of AdS5, the incompleteness of the
Poincaré patch is at the origin of the incompleteness of the Randall Sundrum II space-time with
respect to timelike and lightlike geodesics. Moreover we were able to demonstrate that the setup
considered in this paper provides an alternative to the Randall-Sundrum II model which does not
suffer from the drawback of being geodesically incomplete. The latter point was part of the main
motivations for this work.

The spatial part of our manifold is characterized by an extreme anisotropy with respect to one
of the coordinates (the extra coordinate) accounting for thirty orders of magnitude between the
size of the observable universe and present upper bounds for the size of extra dimensions.

Another interesting property of our manifold related to the anisotropy of its spatial part is
the fact that any two points on the brane are separated by a distance of the order of the size
of the extra dimension R regardless of their distance measured by means of the induced metric
on the brane. Despite the difference in the global topology, the properties of gravity localization
turned out to be very similar to the Randall-Sundrum II model, though much more difficult to
work out technically. We computed the static (modified) Green’s function of a massless scalar field
in our background and could show that in the intermediate distance regime R ≪ r ≪ RU the
4-dimensional Newton’s law is valid for two test particles on the brane, with asymptotic corrections
terms identical to the Randall-Sundrum II case up to tiny factors of tanh

(
ωπ
2

)
. We could also

recover the characteristic 5-dimensional behavior of the Green’s function for distances smaller than
the extra dimension r ≪ R. Eventually we saw that in the regime of cosmic distances r ∼ RU ,
somewhat counterintuitive given our highly anisotropic manifold, the Green’s function is dominated
by the behavior of the corresponding static (modified) Green’s function in Einstein’s static universe.

In the simple setup considered in this paper the 3-brane is supposed to be motionless. In the
light of recent progress in the study of 4-dimensional cosmic evolution induced by the motion of
the brane in the bulk, it would be interesting to explore this possibility and see what kind of
modifications of our results we would have to envisage. Finally a related, important question which
would be interesting to address would be the question of stability of our setup.
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A Parallels in the computation of the corrections to Newton’s
law between the case under consideration and the Randall-
Sundrum II case

The purpose of this appendix is to review briefly the calculations of the static two-point function
of a scalar field in the Randall-Sundrum II background [47, 49] and to compare each stage with the
corresponding stage of calculations in the background considered in this paper. This serves mainly
for underlining similarities and differences between the two calculations. Let us begin by writing
down the metric of the Randall-Sundrum II model

ds2 = e−2k|y|ηµνdx
µdxν + dy2 , −πrc ≤ y ≤ πrc . (A.1)

Here y stands for the extra dimension while k and ηµν denote the inverse radius of AdS5 space and
the (4-dimensional)-Minkowski metric with signature − + ++. Due to the orbifold Z2-symmetry
the allowed range of y is 0 ≤ y ≤ πrc.

15 As it is well known, each 4-dimensional graviton mode
in this background satisfies the equation of a massless scalar field. Therefore, for the study of the
potential between two test masses on the brane we confine ourselves to solving the equation of a
massless scalar field with an arbitrary time-independent source:

Du(~x, y) = j(~x, y) with D = e2ky∆x − 4k
∂

∂y
+

∂2

∂y2
. (A.2)

Since the operator D is formally self-adjoint, the corresponding Green’s function will satisfy:

DG(~x, ~x′; y, y′) =
δ3(~x− ~x′) δ(y − y′)√−g . (A.3)

We are now able to write down the usual integral representation of the solution of (A.2):

u(~x, y) =

∫ √−g j(~x′, y′)G(~x, ~x′; y, y′) d3~x′dy′, (A.4)

where the y′-integration extends from 0 to πrc and the ~x′ integrations from −∞ to ∞. The
absence of boundary terms in (A.4) is of course the result of an appropriate choice of boundary
conditions for u(~x, y) and G(~x, ~x′; y, y′). In the above coordinates of the Randall-Sundrum II case
the orbifold boundary conditions together with the Israel condition imposed on the fluctuations
of the metric give rise to a Neumann boundary condition at y = 0. One can easily convince
oneself that in the limit rc → ∞ the resulting Green’s function is independent of the choice of the
(homogeneous) boundary condition at y = πrc. We therefore follow [6] and use also a Neumann
boundary condition at y = πrc. Another important point is that the Green’s function we are
considering is specific to the orbifold boundary condition and so describes the situation of a semi-
infinite extra dimension. We decided to carry out the calculations in the semi-infinite case as
opposed to [6], where eventually the orbifold boundary conditions are dropped and the case of
a fully infinite extra dimension is considered.16 An immediate consequence of this will be that

15We allow for a finite rc only to impose boundary conditions in a proper way. Eventually we are interested in the
limit rc → ∞.

16However as long as matter on the brane is considered the Green’s function for the two setups differ only by a
factor of 2.
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the constant factors of the characteristic short distance singularities of the solutions of Laplace
equations also will be modified by a factor of 2. Finally we note that this factor of 2 can be
accounted for by an overall redefinition of the 5-dimensional Newton’s constant leaving the two
theories with equivalent predictions. We conclude the discussion of boundary conditions by noting
that at infinity in ~x′ we suppose that the u(~x′, y′) and G(~x, ~x′; y, y′) vanish sufficiently rapidly.

The solution of eq. (A.3) can be found most conveniently by Fourier expansion in the ~x-
coordinates and by direct solution of the resulting differential equation for the “transverse” Green’s
function. After performing the integrations over the angular coordinates in Fourier space we obtain:

G(~x− ~x′, y, y′) =
1

2π2

∞∫

0

p sin (p|~x− ~x′|)
|~x− ~x′| g(p)(y, y′)dp , (A.5)

where g(p)(y, y′) satisfies

1

e−4ky

∂

∂y

[

e−4ky ∂

∂y
g(p)(y, y′)

]

− p2e2kyg(p)(y, y′) =
δ(y − y′)
e−4ky

, (0 ≤ y ≤ πrc) (A.6)

together with Neumann boundary conditions at y = 0 and y = πrc. The solution of (A.6) is
straightforward with the general result

g(p)(y, y′) =
e2k(y>+y<)

k
× (A.7)

×
[
I1
( p

k

)
K2

( p
ke

ky<
)

+K1

( p
k

)
I2
( p

ke
ky<
)]

·
[
I1
( p

ke
kπrc

)
K2

( p
ke

ky>
)

+K1

( p
ke

kπrc
)
I2
( p

ke
ky>
)]

I1
( p

k

)
K1

( p
ke

kπrc
)
− I1

( p
ke

kπrc
)
K1

( p
k

) ,

where y> (y<) denote the greater (smaller) of the two numbers y and y′ and I1(z), I2(z),K1(z),K2(z)
are modified Bessel functions. Since we want to study sources on the brane we now set y′ = 0 and
take the well-defined limit rc → ∞, as can easily be verified from the asymptotic behavior of In
and Kn for large values of z. We are therefore able to write the static scalar two-point function as

G(~x− ~x′; y, 0) = −e
2ky

2π2

∞∫

0

sin (p|~x− ~x′|)
|~x− ~x′|

K2

( p
ke

ky
)

K1

( p
k

) dp . (A.8)

We would like to point out a particularity of the Fourier-integral (A.8). By using the asymptotic
expansions for the modified Green’s functions K1(z) and K2(z) we have [50]:

K2

( p
ke

ky
)

K1

( p
k

) ∼ e−
1
2
kye−

p
k (eky−1)

[

1 + O
(

1

p

)]

, (A.9)

showing that for y = 0 the integral over p in (A.8) does not exist. The correct value of the Green’s
function on the brane is therefore obtained by imposing continuity at y = 0:

G(~x− ~x′; 0, 0) ≡ lim
y→0

G(~x− ~x′; y, 0). (A.10)

Note that this subtlety is still present in our case of the Fourier sum representation of the
modified Green’s function (4.62), as discussed in appendix C.
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The representation (A.8) is very suitable for obtaining the short distance behavior of the Green’s
function. By inserting the expansion (A.9) into (A.8) we can evaluate the integral which will give
reasonable results for distances smaller than 1/k:

G(~x− ~x′; y, 0) ∼ −e
3
2
ky

2π2

1

|~x− ~x′|2 + y2
. (A.11)

We see that after replacing the exponential factor by 1 (valid for y ≪ 1/k) we recover (up to a
factor of 2) the correct 5-dimensional behavior of the Green’s function in flat 4-dimensional space
(4.70).17

For large distances the Fourier-representation (A.8) is less suited for obtaining corrections to
Newton’s law. This is due to the fact that all but the first term in the expansion of K2/K1 in
powers of p around p = 0 lead to divergent contributions upon inserting in (A.8). We therefore
seek another method which will allow us to obtain the corrections to Newton’s law by term-wise
integration.

The idea is to promote (A.8) to a contour-integral in the complex p-plane and to shift the
contour in such a way that the trigonometric function is transformed into an exponential function.
First we introduce dimensionless quantities by rescaling with k according to X = |~x−~x′|k, Y = yk,
z = p|~x− ~x′|:

Ḡ(X,Y, 0) = − k2e2Y

2π2X2

∞∫

0

sin z
K2

(
z
X e

Y
)

K1

(
z
X

) dz

︸ ︷︷ ︸

≡I[X,Y ]

. (A.12)

Following [47] (see also [50]) we now use the relation

K2[w] = K0[w] +
2

w
K1[w] (A.13)

to separate the zero mode contribution to the Green’s function (Newton’s law) from the contribu-
tions coming from the higher Kaluza-Klein particles (corrections to Newton’s law). Using (A.13)
in I[X,Y ] we find

I[X,Y ] =

∞∫

0

sin z
K0

(
z
X e

Y
)

K1

(
z
X

) dz

︸ ︷︷ ︸

≡I1[X,Y ]

+
2X

eY

∞∫

0

sin z

z

K1

(
z
X e

Y
)

K1

(
z
X

) dz

︸ ︷︷ ︸

≡I2[X,Y ]

. (A.14)

The additional factor of 1/z in the integrand of I2[X,Y ] allows us to take the limit Y → 0 with
the result:

lim
Y →0

I2[X,Y ] = πX . (A.15)

However, we still need Y > 0 for convergence in I1[X,Y ]. The next step is to use sin z = ℑ{eız}
and to exchange the operation ℑ with the integration over z:18

I1[X,Y ] = ℑ







∞∫

0

eız
K0

(
z
X e

Y
)

K1

(
z
X

) dz






. (A.16)

17As discussed above the factor of 2 is a direct consequence of the boundary conditions corresponding to a semi-
infinite extra dimension.

18This is justified since both the real and the imaginary part of the resulting integral converge.
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The integrand in (A.16) is a holomorphic function of z in the first quadrant (see [50], p.377 for
details). We can therefore apply Cauchy’s theorem to the contour depicted in Fig. 3. As we will

R

C1

C2

z

C3

Figure 3: Contour used in Cauchy’s theorem to evaluate the integral (A.16).

show shortly, the contribution from the arc C2 =
{
z | z = Reıϕ, 0 ≤ ϕ ≤ π

2

}
vanishes in the limit

R→ ∞ (the limit we are interested in). Symbolically we therefore have

lim
R→∞

{∫

C1

. . .+

∫

C3

. . .

}

= 0 , (A.17)

where . . . replace the integrand in (A.16) and the sense of integration is as indicated in the figure.
This means that we can replace the integration over the positive real axis in (A.16) by an integration
over the positive imaginary axis without changing the value of I1[X,Y ]. Substituting now z in favor
of n according to n = −ız we obtain:

I1[X,Y ] = ℑ







∞∫

0

e−nK0

(
ın
X e

Y
)

K1

(
ın
X

) ıdn






= ℑ







∞∫

0

e−n−H
(2)
0

(
n
X e

Y
)

H
(2)
1

(
n
X

) dn







=

∞∫

0

e−nY0

(
n
X e

Y
)
J1

(
n
X

)
− J0

(
n
X e

Y
)
Y1

(
n
X

)

[
J1

(
n
X

)]2
+
[
Y1

(
n
X

)]2 dn . (A.18)

In the first line in (A.18) we replaced modified Bessel functions with imaginary arguments by
Hankel functions of real argument. In the second line we explicitly took the imaginary part after
replacing the identities relating the Hankel functions and the Bessel functions J and Y of the first
kind. The benefit from the rotation of the contour of integration is obvious at this stage. First,
the last integral in (A.18) converges also for Y = 0 due to the presence of the exponential function
in the integrand. In this case we have

I1[X, 0] =
2X

π

∞∫

0

e−n

n

1
[
J1

(
n
X

)]2
+
[
Y1

(
n
X

)]2 dn . (A.19)

Note that we used the Wronskian relation for Bessel functions to simplify the numerator, the general
reference being once more [50]. Second, it is straightforward to obtain the large X asymptotic
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(1 ≪ X) of the integral (A.19) by a simple power series expansion in n around n = 0 of the
integrand (apart from the exponential factor), followed by term-wise integration. For the results
see [46], where the above integral (A.19) has been found in the wave-function approach:

I1[X, 0] ∼
π

2X
+

π

X3
(4 − 3 ln 2 − 3 lnX) + O

[
lnX

X5

]

. (A.20)

The result for Ḡ(X, 0, 0) is therefore:

Ḡ(X, 0, 0) = − k2

2πX

[

1 +
1

2X2
+

1

X4
(4 − 3 ln 2 − 3 lnX) + O

(
lnX

X6

)]

. (A.21)

However, we still have to verify that the contribution from the arc C2 in Fig. 3 vanishes in the
limit R→ ∞. Parametrizing z by z = Reıϕ, 0 ≤ ϕ ≤ π/2 we find:
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∣
∣
∣
∣
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∣
∣
∣
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∣
∣
∣
∣
∣
∣
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∣
∣
∣
∣
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∣
∣
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∣
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∣
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dϕ . (A.22)

Making now use of the asymptotic properties of the modified Bessel functions to estimate the
second modulus in the last integrand in (A.22) we can write:

∣
∣
∣
∣
∣

K0

(
Reıϕ

X eY
)

K1

(
Reıϕ

X

)

∣
∣
∣
∣
∣
≤ C

∣
∣
∣
∣
e−

Y
2 e−Reıϕ eY −1

X

∣
∣
∣
∣
, (A.23)

so that

∣
∣
∣
∣
∣

∫
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eız
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X e
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K1

(
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X
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∣
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∣
< CRe−

Y
2
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2∫

0

e
−R

[
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(

eY −1
X

)

cos ϕ
]

dϕ , (A.24)

with C being a constant of the order of unity, independent of R and ϕ. To finish the estimate we
observe that

sinϕ+

(
eY − 1

X

)

cosϕ ≥ ǫ ≡ min

[

1,
eY − 1

X

]

> 0 , ∀ϕ ∈ [0,
π

2
] , (Y > 0) (A.25)

and obtain: ∣
∣
∣
∣
∣

∫
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eız
K0

(
z
X e

Y
)

K1

(
z
X

) dz

∣
∣
∣
∣
∣
<
CRπ

2
e−

Y
2 e−Rǫ → 0 for R→ ∞. (A.26)

This establishes the result that in the limit R→ ∞ the arc C2 does not contribute to the integral
in (A.16) and completes our discussion of the two-point function in the Randall Sundrum-II setup.

We are now going to summarize briefly the complications arising when the general scheme
of computations outlined above for the Randall-Sundrum II case are applied to the brane setup
considered in this paper. First and foremost, the main difference is due to the fact that the induced
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metric on our brane is not the flat Minkowski metric but the metric of the Einstein static universe.
This implies the use of a modified Green’s function. In the eigenfunction expansion, the discrete
scalar-harmonics on S3 will replace the continuous plane-wave eigenfunctions. We therefore expect
the formal solution for the two-point function (the analog of (A.5)) to take the form of a Fourier
sum.

The solution to the transverse Green’s function (the analog of eq. (A.6)) as presented in
appendix B turns out to be again straightforward and completes the formal solution.

When trying to distinguish between the zero mode contribution and the contribution coming
from higher modes (in the language of the Kaluza-Klein approach) a relation similar to (A.13)
proves useful. While the evaluation of the zero mode contribution poses no problems, the corrections
coming from higher modes are much more involved this time. We face the following major technical
difficulties: there is no analog of Cauchy’s theorem in the discrete case of the Fourier sum. One
solution to this problem is to use a variant of Euler-Maclaurin’s sum rule in order to replace
the Fourier sum by an analog Fourier integral and a remainder term also in the form of an integral.
Now the procedure again is similar to the one outlined for the Randall-Sundrum case. Another
technical problem, however, in connection with large distances corrections has its origin in the
simple fact that by large distances in our setup we mean distances large with respect to the extra
dimension R but also small with respect to the size of the observable universe RU . The detailed
computations of the corrections in this distances regime can be found in appendix C.

What concerns the computation of the two-point function at distances smaller than the extra
dimension, there is no conceptual difference to the Randall-Sundrum case. The Fourier sum can
be calculated analytically after inserting the corresponding large momentum asymptotic. We give
the details in appendix D.
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B Solutions to the differential equations (4.55) and (4.60)

The aim of this appendix is to obtain the solutions to the eqs. (4.55) and (4.60) and hence to
complete the computation of the modified Green’s function. We will concentrate mainly on (4.60)
for two reasons: first and foremost because in the formal expansion (4.62) g(1)(θ, θ′) multiplies a
constant function in s and since we are mainly interested in the behavior of the Green’s function
on the brane, this constant is of no relevance for our considerations. Secondly because the con-
struction of the Green’s functions g(1)(θ, θ′) and g(λ)(θ, θ′) follows the standard procedure, so it is
not necessary to go into details twice. We will merely state the result for g(1)(θ, θ′). The equation
we would like to solve is

1 − λ2

R2
Uγ(θ)

2
g(λ)(θ, θ′) +

1

R2

1

σ(θ)γ(θ)3
∂

∂θ

[

σ(θ)γ(θ)3
∂g(λ)(θ, θ′)

∂θ

]

=
δ(θ − θ′)
σ(θ)γ(θ)3

, (B.1)

where λ = 2, 3, 4 . . . and the independent variables θ and θ′ are restricted to the intervals −π/2 ≤
θ ≤ π/2, and −π/2 ≤ θ′ ≤ π/2. The homogeneous equation associated with (B.1) can be reduced
to the hypergeometric equation. Its general formal solution in the interval 0 ≤ θ ≤ π/2 is given by

ϕ(+)(λ, θ) = a
(+)
1 ϕ1(λ, θ) + a

(+)
2 ϕ2(λ, θ) , 0 ≤ θ ≤ π

2
(B.2)

where

ϕ1(λ, θ) =
tanhλ−1

[
ω
(

π
2 − θ

)]

cosh4
[
ω
(

π
2 − θ

)] 2F1

[
λ+ 3

2
,
λ+ 3

2
;λ+ 1; tanh2

[

ω
(π

2
− θ
)]]

,

ϕ2(λ, θ) =
tanhλ−1

[
ω
(

π
2 − θ

)]

cosh4
[
ω
(

π
2 − θ

)] 2F1

[
λ+ 3

2
,
λ+ 3

2
; 3; cosh−2

[

ω
(π

2
− θ
)]]

. (B.3)

Due to the symmetry of the background under θ → −θ we can immediately write down the general
solution of the homogeneous equation obtained from (B.1) in the interval −π/2 ≤ θ ≤ 0:

ϕ(−)(λ, θ) = a
(−)
1 ϕ1(λ,−θ) + a

(−)
2 ϕ2(λ,−θ) , −π

2
≤ θ ≤ 0 . (B.4)

We now have to decide whether we want to restrict our Green’s function to describe perturbations
which also possess the symmetry θ → −θ of the background (as in the Randall-Sundrum case)
or not. In the first case one can limit the solution of (B.1) to θ > 0 and continue the result
symmetrically into θ < 0. Note that imposing the symmetry θ → −θ on the perturbations goes
hand in hand with imposing θ → −θ for the source which means that one should add a corresponding
delta-function δ(θ + θ′) to the right hand side of (B.1). The Israel-condition (4.14) on the brane

with θ = 0 then gives ∂g(λ)

∂θ = 0, as in the Randall-Sundrum case.
Since in our setup we do not have any convincing argument for imposing the θ → −θ symmetry

also on the metric fluctuations (the scalar field), the second case, which allows a breaking of this
symmetry will be the case of our choice. The Israel-condition (4.14) now merely indicates that the
perturbation (the scalar field) should have a continuous first derivative at the brane.

In order to obtain a uniquely defined solution we have to impose two boundary conditions on
g(λ)(θ, θ′) one at θ = π/2 the other at θ = −π/2. It turns out that the requirement of square
integrability of our solutions (with the correct weight-function) forces us to discard one of the two
fundamental solutions at the boundaries θ = ±π/2, namely ϕ2(λ, θ).
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Before going into details we introduce the following abbreviations:

p(θ) =
σ(θ)γ(θ)3

R2
, s(θ) =

σ(θ)γ(θ)

R2
U

. (B.5)

Eq. (B.1) then becomes

[

p(θ)g(λ)′(θ, θ′)
]′
− (λ2 − 1) s(θ)g(λ)(θ, θ′) = δ(θ − θ′) , (B.6)

where ′ denotes derivatives with respect to θ here and in the following. We start by taking θ′ > 0.
The case θ′ < 0 is fully analogous to the one considered up to minus signs. Our ansatz for g(λ)(θ, θ′)
is

g(λ)(θ, θ′) =







A(θ′)ϕ(λ)
1 (−θ) −π

2 ≤ θ ≤ 0 ,

B(θ′)ϕ(λ)
1 (θ) +C(θ′)ϕ(λ)

2 (θ) 0 ≤ θ ≤ θ′ ,

D(θ′)ϕ(λ)
1 (θ) θ′ ≤ θ ≤ π

2 .

(B.7)

We impose the following boundary and matching conditions on g(λ)(θ, θ′) which will uniquely
determine the coefficients A,B,C,D:

1. continuity of g(λ)(θ, θ′) at θ = 0.

2. continuity of g(λ)′(θ, θ′) at θ = 0.

3. continuity of g(λ)(θ, θ′) at θ = θ′.

4. jump condition of g(λ)′(θ, θ′) at θ = θ′.

Using the ansatz (B.7) we obtain from the above conditions:

[A(θ′) −B(θ′)]ϕ(λ)
1 (0) − C(θ′)ϕ(λ)

2 (0) = 0 ,

[A(θ′) +B(θ′)]ϕ(λ)
1

′(0) + C(θ′)ϕ(λ)
2

′(0) = 0 ,

[B(θ′) −D(θ′)]ϕ(λ)
1 (θ′) + C(θ′)ϕ(λ)

2 (θ′) = 0 ,

[B(θ′) −D(θ′)]ϕ(λ)
1

′(θ′) + C(θ′)ϕ(λ)
2

′(θ′) = − 1
p(θ′) ,

(B.8)

the solution of which is easily found to be:

A(θ′) =
R2

2

ϕ
(λ)
1 (θ′)

ϕ
(λ)
1 (0)ϕ

(λ)
1

′(0)
, B(θ′) =

R2

2

ϕ
(λ)
1 (θ′)

W
[

ϕ
(λ)
1 , ϕ

(λ)
2 , 0

]
ϕ

(λ)
1 (0)ϕ

(λ)
2

′(0) + ϕ
(λ)
2 (0)ϕ

(λ)
1

′(0)

ϕ
(λ)
1 (0)ϕ

(λ)
1

′(0)
,

C(θ′) = −R2 ϕ
(λ)
1 (θ′)

W
[

ϕ
(λ)
1 , ϕ

(λ)
2 , 0

] , D(θ′) = B(θ′) −R2 ϕ
(λ)
2 (θ′)

W
[

ϕ
(λ)
1 , ϕ

(λ)
2 , 0

] , (B.9)

where W
[

ϕ
(λ)
1 , ϕ

(λ)
2 , 0

]

denotes the Wronskian of ϕ
(λ)
1 and ϕ

(λ)
2 at θ = 0. In obtaining (B.9) we

used the relation

W
[

ϕ
(λ)
1 , ϕ

(λ)
2 , θ

]

=
W
[

ϕ
(λ)
1 , ϕ

(λ)
2 , 0

]

R2 p(θ)
. (B.10)
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As already mentioned, the case θ′ < 0 can be treated in complete analogy to the case θ′ > 0.
Combining the two results gives the final expression for the solution g(λ)(θ, θ′) of (B.1) (for λ =
2, 3, . . .):

g(λ)(θ, θ′) =







A(|θ′|)ϕ(λ)
1 (|θ|) −π

2 ≤ θ sign(θ′) ≤ 0 ,

B(|θ′|)ϕ(λ)
1 (|θ|) + C (|θ′|)ϕ(λ)

2 (|θ|) 0 ≤ θ sign(θ′) ≤ |θ′| ,
D(|θ′|)ϕ(λ)

1 (|θ|) |θ′| ≤ θ sign(θ′) ≤ π
2 .

(B.11)

It is easily verified that the Green’s function (B.11) has the property

g(λ)(θ, θ′) = g(λ)(θ′, θ) (B.12)

as expected for a self-adjoint boundary value problem. We will not need the result (B.11) in its
full generality. We focus on the case where sources are located at the brane (θ′ = 0). In this case
(B.11) reduces to:

g(λ)(θ, 0) =
R2

2

ϕ
(λ)
1 (|θ|)
ϕ

(λ)
1

′(0)
, (λ = 2, 3, . . .) . (B.13)

For the sake of completeness, we also give the solution g(1)(θ, θ′) to (4.55)

1

R2

1

σ(θ)γ(θ)3
∂

∂θ

[

σ(θ)γ(θ)3
∂g(1)(θ, θ′)

∂θ

]

=
1

σ(θ)γ(θ)3
δ(θ − θ′) − χ̃1(θ) ¯̃χ1(θ

′) . (B.14)

The general procedure of finding the solution is fully analogous to the case of g(λ)(θ, θ′) (for λ =
2, 3, . . .), the only difference being that in regions where θ 6= θ′ (B.14) reduces to an inhomogeneous
differential equation. In the interval 0 ≤ θ ≤ π/2 the general solution is given by

ψ(θ) = ψ0(θ) +Aψ1(θ) +Bψ2(θ), (B.15)

with

ψ0(θ) = − R2

2ω tanh
(

ωπ
2

) ln
[

cosh
[

ω
(π

2
− θ
)]]

,

ψ1(θ) = 1 , ψ2(θ) = 2 ln
[

tanh
[

ω
(π

2
− θ
)]]

+ coth2
[

ω
(π

2
− θ
)]

. (B.16)

With these definitions, it is easy to verify that g(1)(θ, θ′) is given by:

g(1)(θ, θ′) = const. + ψ0(|θ|) + ψ0(|θ′|) + C







ψ2(0) −π
2 ≤ θ sign(θ′) ≤ 0

ψ2(|θ|) 0 ≤ θ sign(θ′) ≤ |θ′|
ψ2(|θ′|) |θ′| ≤ θ sign(θ′) ≤ π

2

, (B.17)

with

C = − R2

W [ψ1, ψ2, 0]
. (B.18)

By W [ψ1, ψ2, 0] we again mean the Wronskian of ψ1 and ψ2 evaluated at θ = 0.
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C Detailed computation of the corrections to Newton’s law

In this appendix we give a detailed computation of the sum

S[s, θ, ω] =

∞∑

λ=2

λ sin (λs)
ϕ

(λ)
1 (θ)

ϕ′(λ)
1 (0)

, 0 < θ ≤ π

2
(C.1)

with

ϕ
(λ)
1 (θ)

ϕ′(λ)
1 (0)

= − z(θ)
λ−1

2 [1 − z(θ)]2 2F1

[
λ+3

2 , λ+3
2 ;λ+ 1; z(θ)

]

ω(λ− 1)z(0)
λ−2

2 [1 − z(0)]2 2F1

[
λ+1

2 , λ+3
2 ;λ+ 1; z(0)

] , (C.2)

where we explicitly excluded θ = 0 since the Fourier sum (C.1) does not converge for this value
of θ.19 We also used the definition z(θ) = tanh2

[
ω
(

π
2 − θ

)]
.

Note that the sum S[s, θ, ω] contains the contribution to the two-point function coming from zero
mode and higher Kaluza-Klein modes. Inspired by the Randall-Sundrum case we try to separate
the two contributions by functional relations between contiguous Gauss Hypergeometric functions.
Using (15.2.15) of reference [50] for a = b− 1 = (λ+ 1) /2, c = λ+ 1 we obtain

[1 − z(θ)] 2F1

[
λ+ 3

2
,
λ+ 3

2
;λ+ 1; z(θ)

]

=
2

λ+ 1
2F1

[
λ+ 1

2
,
λ+ 3

2
;λ+ 1; z(θ)

]

+
λ− 1

λ+ 1
2F1

[
λ+ 1

2
,
λ+ 1

2
;λ+ 1; z(θ)

]

. (C.3)

In this way we are able to rewrite S[s, θ, ω] in the form:

S[s, θ, ω] = S1[s, θ, ω] + S2[s, θ, ω] , (C.4)

where

S1[s, θ, ω] = − 2

ω

z(0)

z(θ)
1
2

1 − z(θ)

[1 − z(0)]2

∞∑

λ=2

λ sin (λs)

λ2 − 1

[
z(θ)

z(0)

]λ
2 2F1

[
λ+1

2 , λ+3
2 ;λ+ 1; z(θ)

]

2F1

[
λ+1

2 , λ+3
2 ;λ+ 1; z(0)

] , (C.5)

S2[s, θ, ω] = − 1

ω

z(0)

z(θ)
1
2

1 − z(θ)

[1 − z(0)]2

∞∑

λ=2

λ sin (λs)

λ+ 1

[
z(θ)

z(0)

]λ
2 2F1

[
λ+1

2 , λ+1
2 ;λ+ 1; z(θ)

]

2F1

[
λ+1

2 , λ+3
2 ;λ+ 1; z(0)

] . (C.6)

From the asymptotic formula (D.1) we infer that now the sum S1[s, θ, ω] is convergent even for
θ = 0 due to the additional power of λ in the denominator. We therefore obtain

S1[s, 0, ω] = − 2

ω

z(0)
1
2

1 − z(0)

∞∑

λ=2

λ sin (λs)

λ2 − 1
= − 2

ω

z(0)
1
2

1 − z(0)

(
π − s

2
cos s− 1

4
sin s

)

. (C.7)

Since we recognized in the last sum the two point function of Einstein’s static universe, we attribute
the contribution coming from S1[s, θ, ω] to the zero mode in the Kaluza-Klein spectrum. We also

19Note that this mathematical delicacy about the divergence of the Green’s function on the brane also applies to
the Randall-Sundrum case of the Fourier integral representation of the two-point function. The obvious remedy is to
keep θ strictly greater than zero during the whole calculation and eventually take the limit θ → 0.
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should mention that in S2[s, θ, ω] we still need θ > 0 for convergence since only then the factor

[z(θ)/z(0)]
λ−1

2 provides an exponential cutoff in λ for the sum.
The main challenge in the evaluation of the two-point function is therefore to tame the sum

S2[s, θ, ω]. Our strategy is the following: first we extend it from λ = 0 to ∞ by adding and
subtracting the λ = 0 and λ = 1 terms. Next, we replace the sum over λ by the sum of two
integrals employing a variant of the Euler-Maclaurin sum rule called the Abel-Plana formula
(see. e.g. [51], p. 289-290). Finally, we shall see that the resulting (exact) integral representation
will allow us to extract the desired asymptotic of the two-point function on the brane in the distance
regime of interest (R ≪ r ≪ RU ).

As announced, we start by extending the range of the sum from 0 to ∞. Since the addend with
λ = 0 vanishes, we only need to subtract the λ = 1 term with the result:

S2[s, θ, ω] = − 1

2ω

z(0)
1
2

z(θ)

1 − z(θ)

1 − z(0)
ln [1 − z(θ)] sin s− 1

ω

z(0)

z(θ)
1
2

1 − z(θ)

1 − z(0)
R[s, θ, ω] , (C.8)

where R[s, θ, ω] is defined by

R[s, θ, ω] =

∞∑

λ=0

λ sin (λs)

λ+ 1

[
z(θ)

z(0)

]λ
2 2F1

[
λ+1

2 , λ+1
2 ;λ+ 1; z(θ)

]

2F1

[
λ+1

2 , λ−1
2 ;λ+ 1; z(0)

] . (C.9)

We used the identity

2F1

[
λ+ 1

2
,
λ+ 3

2
;λ+ 1; z(0)

]

= [1 − z(0)]−1
2F1

[
λ+ 1

2
,
λ− 1

2
;λ+ 1; z(0)

]

(C.10)

in the last step (see 15.3.3 of [50]). The next step consists of extending the sin function in (C.9) to
an exponential and taking the imaginary part out of the sum (as in the Randall-Sundrum case).
Now we make use of the Abel-Plana formula, first considering the partial sums:

R(n)[s, θ, ω] = ℑ




1

2
f(0, s, θ, ω) +

1

2
f(n, s, θ, ω) +

n∫

0

f(λ, s, θ, ω) dλ (C.11)

+ı

∞∫

0

f(ıy, s, θ, ω) − f(n+ ıy, s, θ, ω) − f(−ıy, s, θ, ω) + f(n− ıy, s, θ, ω)

e2πy − 1
dy



 ,

where for the sake of clarity we introduced

f(λ, s, θ, ω) ≡ λeıλs

λ+ 1

[
z(θ)

z(0)

]λ
2 2F1

[
λ+1

2 , λ+1
2 ;λ+ 1; z(θ)

]

2F1

[
λ+1

2 , λ−1
2 ;λ+ 1; z(0)

] . (C.12)

In the limit n→ ∞ we find:

R[s, θ, ω] = ℑ
[

∞∫

0

f(λ, s, θ, ω)dλ

︸ ︷︷ ︸

≡R1[s,θ,ω]

+ ı

∞∫

0

f(ıy, s, θ, ω) − f(−ıy, s, θ, ω)

e2πy − 1
dy

︸ ︷︷ ︸

≡R2[s,θ,ω]

]

. (C.13)
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C.1 Leading order asymptotic of ℑ{R1[s, θ, ω]}
We focus first on R1[s, θ, ω] and observe that the function f(λ, s, θ, ω) is holomorphic (in λ) in
the first quadrant.20 Therefore, in perfect analogy with the Randall-Sundrum case treated in
appendix A, we can use Cauchy’s theorem to replace the integration over the positive real axis
by an integration over the positive imaginary axis.21 After substituting λ with ıy we obtain :

R1[s, θ, ω] = −
∞∫

0

y(1 − ıy)

1 + y2
e−ys

[
z(θ)

z(0)

] ıy
2 2F1

[
1+ıy

2 , 1+ıy
2 ; 1 + ıy; z(θ)

]

2F1

[
1+ıy

2 , −1+ıy
2 ; 1 + ıy; z(0)

]dy . (C.14)

The upper deformation of the path of integration is advantageous for at least two reasons. Firstly,
through the appearance of the exponential in the integrand, convergence on the brane does no
longer rely on θ > 0 and we can set θ equal to zero in (C.14) to obtain:

R1[s, 0, ω] = −
∞∫

0

y(1 − ıy)

1 + y2
e−ys

2F1

[
1+ıy

2 , 1+ıy
2 ; 1 + ıy; z(0)

]

2F1

[
1+ıy

2 , −1+ıy
2 ; 1 + ıy; z(0)

]dy . (C.15)

Secondly, the form (C.14) is perfectly suited for obtaining asymptotic expansions for large distances.
Note that since s ∈ [0, π], we carefully avoided saying “for large s” since this would not correspond
to the case of our interest. We try to compute the two-point function in a distance regime R ≪
r ≪ RU , distances clearly far beyond the size of the fifth dimension but far below the size of the
observable universe. Rewritten in the geodesic distance coordinate s this becomes ω/ sinh

(
ωπ
2

)
≪

s ≪ 1. It is this last relation which complicates the computation of the asymptotic considerably.
We are forced to look at an asymptotic evaluation of (C.15) (or (C.14)) for intermediate s values
such that we cannot make direct use of Laplace’s method. The correct way of extracting the above
described asymptotic is to expand the ratio of hypergeometric functions in (C.15) in a power series
of the small parameter 1 − z(0). Using rel. (15.3.10) and (15.3.11) (with m = 1) of [50] we find
after some algebra

2F1

[
1+ıy

2 , 1+ıy
2 ; 1 + ıy; z(0)

]

2F1

[
1+ıy

2 , −1+ıy
2 ; 1 + ıy; z(0)

] = −1

2
(1 + ıy)

[

2γ + 2ψ(
1 + ıy

2
) + ln [1 − z(0)]

]

+

{(
1 + ıy

2

)3 [

2ψ(2) − 2ψ

(
3 + ıy

2

)

− ln [1 − z(0)]

]

−
(

1 + ıy

2

)2(−1 + ıy

2

)[

2ψ(1) − 2ψ

(
1 + ıy

2

)

− ln [1 − z(0)]

]

×

×
[

ln [1 − z(0)] − ψ(1) − ψ(2) + ψ

(
3 + ıy

2

)

+ ψ

(
1 + ıy

2

)]}

[1 − z(0)]

+ O
{

ln [1 − z(0)] [1 − z(0)]2
}

. (C.16)

20Everything but the ratio of the hypergeometric functions is clearly holomorphic. The dependence of Gauss’s
hypergeometric function on the parameters is also holomorphic so the only danger comes from the zeros of

2F1

[
λ+1

2
, λ−1

2
; λ + 1; z(0)

]
. These, however, turn out to be outside of the first quadrant.

21To be mathematically correct, one has to apply Cauchy’s theorem to the quarter of the disk of radius R bounded
by the positive real axis, the positive imaginary axis and the arc joining the points R and ıR, see Fig. 3 in appendix
A. The above statement will then be correct if in the limit R → ∞ the contribution from the arc tends to zero. We
will verify this in section C.4 of this appendix.
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In the above relation γ denotes Euler-Mascheroni’s constant and ψ(z) ≡ Γ′[z]/Γ[z] the so-called
Digamma-function. Note that we developed up to linear order in 1 − z(0) since we also want to
compute the next to leading order term in the asymptotic later in this appendix.

We are only interested in the imaginary part of R1[s, 0, ω] and it turns out that the first term
in the expansion (C.16) after insertion in (C.15) can be integrated analytically:

ℑ
{

R
(0)
1 [s, 0, ω]

}

= ℑ







∞∫

0

ye−ysψ

(
1 + ıy

2

)

dy






=

∞∫

0

ye−ysℑ
[

ψ

(
1 + ıy

2

)]

dy . (C.17)

The last step is justified since also the real part of the first integral in (C.17) converges, as follows
immediately from the asymptotic ψ(z) ∼ ln z − 1

2z + O( 1
z2 ). Since

ℑ
[

ψ(
1 + ıy

2
)

]

=
π

2
tanh

(πy

2

)

, (C.18)

([50], p.259, 6.3.12) we find

ℑ
{

R
(0)
1 [s, 0, ω]

}

=
π

2

∞∫

0

ye−ys tanh
(πy

2

)

dy = −π
2

d

ds





∞∫

0

e−ys tanh
(πy

2

)

dy





= −π
2

d

ds





∞∫

0

e−ys

(
2

1 + e−πy
− 1

)

dy



 = −π
2

d

ds



−1

s
+ 2

∞∫

0

e−ys

1 + e−πy
dy





= − π

2s2
− d

ds





∞∫

0

e−
zs
π

1 + e−z
dz



 = − π

2s2
− 1

π
β′(

s

π
) , (C.19)

where we introduced the β-function by

β(x) ≡ 1

2

[

ψ

(
x+ 1

2

)

− ψ
(x

2

)]

(C.20)

(see [52], p.331, 3.311, 2.).22

C.2 Leading order asymptotic of ℑ{R2[s, θ, ω]}
We can treat R2[s, θ, ω] starting from (C.13) in very much the same way as R1[s, θ, ω]. Noting that
we can again put θ equal to zero since the exponential factor e2πy guarantees the convergence of
the integral, R2[s, 0, ω] becomes explicitly:

R2[s, 0, ω] =

∞∫

0

1

e2πy − 1




−y + ıy2

1 + y2
e−ys

2F1

[
1+ıy

2 , 1+ıy
2 ; 1 + ıy; z(0)

]

2F1

[
1+ıy

2 , −1+ıy
2 ; 1 + ıy; z(0)

]

+
−y − ıy2

1 + y2
eys

2F1

[
1−ıy

2 , 1−ıy
2 ; 1 − ıy; z(0)

]

2F1

[
1−ıy

2 , −1−ıy
2 ; 1 − ıy; z(0)

]



 dy . (C.21)

22By β′ in (C.19) we mean the derivative of β with respect to its argument.
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If we now employ the expansion (C.16) two times in (C.21) we find after some algebra:

ℑ
{

R
(0)
2 [s, 0, ω]

}

= ℑ







∞∫

0

y

e2πy − 1

[

e−ysψ

(
1 + ıy

2

)

+ eysψ

(
1 − ıy

2

)]

dy






(C.22)

and using (C.18) we have

ℑ
{

R
(0)
2 [s, 0, ω]

}

=

∞∫

0

π

2

y

e2πy − 1

[

e−ys tanh
(πy

2

)

+ eys tanh
(

−πy
2

)]

dy (C.23)

= −π
∞∫

0

y

e2πy − 1
tanh

(πy

2

)

sinh(ys)dy = −π
∞∫

0

y

(1 + eπy)2
sinh(ys)dy

= −π d
ds





∞∫

0

cosh(ys)

(1 + eπy)2
dy



 = −1

2

d

ds





1∫

0

u1− s
π

(1 + u)2
du+

1∫

0

u1+ s
π

(1 + u)2
du





= −1

2

d

ds

{
1

2 − s
π

2F1

[

2, 2 − s

π
; 3 − s

π
;−1

]

+
1

2 + s
π

2F1

[

2, 2 +
s

π
; 3 +

s

π
;−1

]}

.

While we substituted y by u according to u = e−πy in the third line, we used (3.194, p.313) of [52]
with ν = 2, u = β = 1 and µ = 2 ∓ s/π (valid for s < 2π) in the last line. In order to simplify
the hypergeometric functions, we first use another relation between contiguous functions, namely
eq. (15.2.17) of [50] with a = 1, b = k, c = k + 1 and z = −1 and then the formulae (15.1.21) and
(15.1.23) of [50] together with the duplication formula for the Γ-function to obtain:

1

k
2F1 [2, k; k + 1;−1] = 2F1 [1, k; k;−1] − k − 1

k
2F1 [1, k; k + 1;−1]

= 2−k√π Γ [k]

Γ
[

k
2

]
Γ
[

k+1
2

] − (k − 1) β(k)

=
1

2
+ (1 − k)β(k). (C.24)

After making use of this in (C.23) we finally obtain for the contribution to lowest order in 1− z(0):

ℑ
{

R
(0)
2 [s, 0, ω]

}

=
1

2

d

ds

[(

1 − s

π

)

β(2 − s

π
) +

(

1 +
s

π

)

β(2 +
s

π
)
]

. (C.25)

Summarizing the results to lowest order in 1 − z(0) we therefore have

ℑ
{

R
(0)
1 [s, 0, ω]

}

= − π

2s2
− 1

π
β′(

s

π
),

ℑ
{

R
(0)
2 [s, 0, ω]

}

=
1

2

d

ds

[(

1 − s

π

)

β(2 − s

π
) +

(

1 +
s

π

)

β(2 +
s

π
)
]

. (C.26)

Expanding (C.26) around s = 0 we find:

ℑ
{

R
(0)
1 [s, 0, ω]

}

=
π

2s2
− π

12
+ O(s) ,

ℑ
{

R
(0)
2 [s, 0, ω]

}

=

(
1

6
− 3ζ(3)

2π2

)

s+ O(s3) . (C.27)

with ζ denoting Riemann’s ζ-function. As expected the contribution from R
(0)
2 [s, 0, ω] is sub-

leading with respect to the one from R
(0)
1 [s, 0, ω].
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C.3 Next to leading order asymptotic of ℑ{R1[s, θ, ω]}
We would now like to obtain the next to leading order term in the asymptotic of ℑ{R1[s, θ, ω]}, that
is the term obtained from (C.15) by taking into account the linear contribution in 1 − z(0) of the
expansion (C.16). Since the calculation of the integral obtained in this way is rather cumbersome
and anyway we do not need the full s-dependence, we do not intend to evaluate it fully. Extracting
the leading s-divergence at s = 0 is sufficient for our purposes here. To start, we insert the linear
term of (C.16) in (C.15):

ℑ
{

R
(1)
1 [s, 0, ω]

}

= −ℑ







∞∫

0

dyy
1 − ıy

1 + y2
e−ys

{(
1 + ıy

2

)3 [

2ψ(2) − 2ψ

(
3 + ıy

2

)

− ln [1 − z(0)]

]

−
(

1 + ıy

2

)2(−1 + ıy

2

)[

2ψ(1) − 2ψ

(
1 + ıy

2

)

− ln [1 − z(0)]

]

× (C.28)

×
[

ln [1 − z(0)] − ψ(1) − ψ(2) + ψ

(
3 + ıy

2

)

+ ψ

(
1 + ıy

2

)]}

[1 − z(0)]

}

.

After some algebra and by using the functional relation of the Digamma-function ψ(z) (see [50])

ψ (z + 1) = ψ (z) +
1

z
(C.29)

we find

ℑ
{

R
(1)
1 [s, 0, ω]

}

= −1 − z(0)

2

∞∫

0

ye−ysℑ{. . .} dy (C.30)

with

ℑ{. . .} = ℑ
{(

1 + ıy

2

)2 [

2ψ(2) − 2ψ

(
1 + ıy

2

)

− ln [1 − z(0)]

]

− (1 + ıy)

+
1 + y2

4

[

2ψ (1) − 2ψ

(
1 + ıy

2

)

− ln [1 − z(0)]

]

×

×
[

ln [1 − z(0)] − ψ (1) − ψ (2) + 2ψ

(
1 + ıy

2

)]

+
1 − ıy

2

[

2ψ (1) − 2ψ

(
1 + ıy

2

)

− ln [1 − z(0)]

]}

. (C.31)

We will now keep only the terms proportional to y3 in (C.30) (y2 in (C.31)) since only these will
contribute to the leading 1/s4 singular behavior. After a few lines of algebra we find

ℑ
{

R
(1)
1 [s, 0, ω]

}

= −1 − z(0)

2
[1 − 2γ − ln [1 − z(0)]]

∞∫

0

y3e−ysℑ
[

ψ

(
1 + ıy

2

)]

dy

+ [1 − z(0)]

∞∫

0

y3e−ysℑ
[

ψ

(
1 + ıy

2

)]

ℜ
[

ψ

(
1 + ıy

2

)]

dy

+terms involving lower powers of y. (C.32)
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The first integral can be reduced to the integral (C.17) simply by replacing each power of y by a
derivative with respect to s and by taking the derivatives out of the integral:

∞∫

0

y3e−ysℑ
[

ψ

(
1 + ıy

2

)]

dy = − d3

ds3







∞∫

0

e−ysℑ
[

ψ

(
1 + ıy

2

)]

dy







= −π
2

d3

ds3

[

−1

s
+

2

π
β
( s

π

)]

. (C.33)

We could not find an analytic expression for the second integral. However all we need is the first
term of its small s asymptotic23 and this can be easily obtained from the large y asymptotic of
ℜ [ψ ((1 + ıy) /2)]. Since asymptotically

ψ (z) ∼ ln z − 1

2z
− 1

12z2
+ O(

1

z4
) , (z → ∞ in | arg z| < π) (C.34)

we expect that this term will contribute logarithmic terms in s and we find after straightforward
expansions

ℜ
[

ψ

(
1 + ıy

2

)]

∼ ln
y

2
− 1

6y2
+ O

(
1

y4

)

. (C.35)

From the last formula (C.35) we learn that within our current approximation of keeping only highest
(cubic) power terms in y, it is sufficient to take into account only the contribution coming from
ln y

2 . Therefore, we need to calculate the following integral

π

2

∞∫

0

y3e−ys tanh
(πy

2

)

ln y dy = −π
2

d3

ds3

[
∞∫

0

e−ys tanh
(πy

2

)

ln y dy

︸ ︷︷ ︸

≡J (s)

]

, (C.36)

where we used (C.18) once more. Note that the term proportional to ln 2 can be accounted for by
adding a contribution of the type of the first integral in (C.32). One way to find the asymptotic of
J (s) for small s is to integrate the following asymptotic expansion of tanhx

tanhx = 1 − 2e−2x + 2e−4x − 2e−6x + . . . = 1 + 2

∞∑

ν=1

(−1)νe−2νx (C.37)

which converges for all x > 0. Inserting this in the definition of J (s) we find:

J (s) =

∞∫

0

e−ys ln y

[

1 + 2

∞∑

ν=1

(−1)νe−πyν

]

dy

= −γ + ln s

s
+ 2

∞∑

ν=1

(−1)ν+1 γ + ln (s+ νπ)

s+ νπ

= −γ + ln s

s
+

2

π
(γ + lnπ) β

( s

π
+ 1
)

+
2

π

∞∑

ν=1

(−1)ν+1 ln
(
ν + s

π

)

ν + s
π

, (C.38)

23In the sense s ≪ 1.
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where we used the series expansion of the β-function given e.g. in [52]. The last two terms in the
above formula are finite in the limit s→ 0 and therefore will play no role in the asymptotic (since
they are multiplied by a factor of 1 − z(0)).

We are now ready to assemble all contributions to the small s asymptotic of ℑ
{

R
(1)
1 [s, 0, ω]

}

:

ℑ
{

R
(1)
1 [s, 0, ω]

}

∼ 1 − z(0)

2
[1 − 2γ − ln [1 − z(0)] + 2 ln 2]

π

2

d3

ds3

[

−1

s
+

2

π
β
( s

π

)]

− [1 − z(0)]
π

2

d3

ds3

[

−γ + ln s

s
+

2

π
(γ + lnπ) β

( s

π
+ 1
)

+
2

π

∞∑

ν=1

(−1)ν+1 ln
(
ν + s

π

)

ν + s
π

]

+ O(
ln s

s3
)

=
π

2

1 − z(0)

s4

{

8 − 6 ln 2 − 6 ln

[

s
√

1 − z(0)

]}

+ O(
ln s

s3
), (C.39)

where we used the following series expansions for the β-function and for the last term in (C.38):

β
( s

π

)

=
π

s
− ln 2 + O(s) ,

β
( s

π
+ 1
)

= ln 2 + O(s) ,

∞∑

ν=1

(−1)ν+1 ln
(
ν + s

π

)

ν + s
π

=
1

2
[ln(2)]2 − γ ln(2) + O(s). (C.40)

Note that only the term β (s/π) gave a contribution to the leading 1/s4 divergence. Relations
(C.26) and (C.39) constitute the main result of this appendix. They provide the desired asymptotic
behavior of the two-point function in the regime of intermediate distances ω/ sinh

(
ωπ
2

)
≪ s ≪ 1.

A couple of remarks are in place. Clearly, (C.26) is not only an asymptotic result but is valid
for all s ∈ [0, π]. Secondly, we were writing O(ln s/s3) in (C.39) to indicate that we dropped all
contributions coming from terms in the integrand (C.31) lower than cubic order. Finally we point
out that the development of the ratio (C.16) in power of 1 − z(0) indeed generates an asymptotic
in the correct distance regime. This is clear from the fact that each new power in 1− z(0) is paired
with an additional power of y2 in the integrand of ℑ{R1[s, θ, ω]}. This by itself implies upon
multiplication by e−ys and integration over y an additional power of 1/s2. We therefore effectively
generate an expansion in powers of

√

1 − z(0)/s = 1/
[
s cosh

(
ωπ
2

)]
. It is also easy to understand

why this rough way of counting powers works. The reason is that the asymptotic properties of our

integrals ℑ
{

R
(n)
1 [s, 0, ω]

}

are determined only by the behavior of the corresponding integrands for

large values of the integration variable y. The terms ℜ [ψ ((1 + ıy) /2)] and ℑ [ψ ((1 + ıy) /2)] do
not interfere with the above power counting since their behavior for large y is either logarithmic in
y (for ℜ) or constant in y (for ℑ).

Finally we want to point out that the expansion in powers of 1/
[
s cosh

(
ωπ
2

)]
is not useful for

obtaining information about the Green’s function for distances s≪ ω/ cosh
(

ωπ
2

)
. In this limit the

asymptotic expansion of the hypergeometric functions in (C.2) for large values of λ proves the most
efficient way to recover the properties of a Green’s function in a 4-dimensional space. See appendix
D for the detailed form of the Green’s function at distances smaller than the extra dimension.
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C.4 Estimate of the arc contribution to R1[s, θ, ω]

This final subsection is dedicated to the verification that the arc denoted C2 in Fig. 3 of appendix
A gives a vanishing contribution to the integral R1[s, θ, ω] and thus justifying the representation
(C.15). We need to know the large λ asymptotic behavior of the hypergeometric functions entering
the definition of R1[s, θ, ω] in (C.12). The relevant formula (D.1) can be found in appendix D where
we discuss the short distance behavior of the Green’s function. After canceling all common factors
from the ratio of the two hypergeometric functions we find:

2F1

[
λ+1

2 , λ+1
2 ;λ+ 1; z(θ)

]

2F1

[
λ+1

2 , λ−1
2 ;λ+ 1; z(0)

] =
λ+ 1

λ− 1

[
z(θ)

z(0)

]−λ+1
2

[

e−ν(θ)

e−ν(0)

]λ+1
2
[
1 + e−ν(θ)

]− 1
2
[
1 − e−ν(θ)

]− 1
2

[
1 + e−ν(0)

] 3
2
[
1 − e−ν(0)

]1
2

×

×
[

1 + O
(

1

λ

)]

. (C.41)

Substituting λ = Reıϕ, we now estimate R1[s, θ, ω]:

∣
∣
∣
∣
∣

∫

C2

λeıλs

λ+ 1

[
z(θ)

z(0)

]λ
2 2F1

[
λ+1

2 , λ+1
2 ;λ+ 1; z(θ)

]

2F1

[
λ+1

2 , λ−1
2 ;λ+ 1; z(0)

]dλ

∣
∣
∣
∣
∣

≤
∫

C2

∣
∣
∣
∣
∣

λeıλs

λ+ 1

[
z(θ)

z(0)

]λ
2 2F1

[
λ+1

2 , λ+1
2 ;λ+ 1; z(θ)

]

2F1

[
λ+1

2 , λ−1
2 ;λ+ 1; z(0)

]

∣
∣
∣
∣
∣
dλ

≤ C

[
z(0)

z(θ)

] 1
2

∣
∣
∣
∣
∣

e−ν(θ)

e−ν(0)

∣
∣
∣
∣
∣

1
2
[
1 + e−ν(θ)

]− 1
2
[
1 − e−ν(θ)

]− 1
2

[
1 + e−ν(0)

] 3
2
[
1 − e−ν(0)

] 1
2

︸ ︷︷ ︸

K

R

π
2∫

0

∣
∣eıRseıϕ∣

∣

∣
∣
∣
∣

Reıϕ

Reıϕ−1

∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

[

e−ν(θ)

e−ν(0)

]Reıϕ

2

∣
∣
∣
∣
∣
∣

dϕ

= KR

π
2∫

0

e−R(s sinϕ−lna cos ϕ)

√

1 − 2 cos ϕ
R + 1

R2

dϕ ≤ K ′R

π
2∫

0

e
−Rs

(

sinϕ+ ln a−1

s
cos ϕ

)

dϕ , (C.42)

where C is a constant independent of R and the estimate of the ratio of the two hypergeometric
functions is valid for large enough R. We also introduced a as in appendix D by (D.7). Note that
a < 1 for 0 < θ. In the last line we estimated the inverse of the square root by an arbitrary constant
(e.g. 2), certainly good for large enough R and for all ϕ. All what is left is to observe that

0 < ǫ ≡ min[1,
ln a−1

s
] ≤ sinϕ+

ln a−1

s
cosϕ for s > 0, a−1 > 1 (C.43)

to obtain the desired result:

∣
∣
∣
∣

∫

C2

dλ . . .

∣
∣
∣
∣
≤ K ′R

π
2∫

0

e−Rsǫdϕ =
π

2
K ′Re−Rsǫ → 0 for R→ ∞. (C.44)
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D The two point function at very short distances (r ≪ R)

The aim of this appendix is to calculate the behavior of the two-point function at distances smaller
than the extra dimension r ≪ R. We will do so by using an appropriate asymptotic expansion for
large parameter values of the hypergeometric functions in (C.2). Such an asymptotic can be found
for example in [53] or [54]. The general formula is24

2F1 [a+ n, a− c+ 1 + n; a− b+ 1 + 2n; z] =
2a+bΓ[a− b+ 1 + 2n]

(
π
n

) 1
2

Γ[a− c+ 1 + n]Γ[c− b+ n]

e−ν(n+a)

z(n+a)
× (D.1)

×
(
1 + e−ν

) 1
2
−c (

1 − e−ν
)c−a−b− 1

2

[

1 + O
(

1

n

)]

with ν defined via the relation

e−ν =
2 − z − 2(1 − z)

1
2

z
. (D.2)

We need to calculate

S[s, θ, ω] =
∞∑

λ=2

λ sin (λs)
ϕ

(λ)
1 (θ)

ϕ′(λ)
1 (0)

(D.3)

with the ratio ϕ
(λ)
1 (θ)/ϕ′(λ)

1 (0) given in (C.2). Using the above expansion (D.1) two times we find
after numerous cancellations

S[s, θ, ω] ∼ − 4

ω

(
1 − z(θ)

1 − z(0)

)2
[
1 + e−ν(θ)

]− 1
2
[
1 − e−ν(θ)

]− 5
2

[
1 + e−ν(0)

] 1
2
[
1 − e−ν(0)

]− 3
2

z(0)
3
2

z(θ)2
e−

3ν(θ)
2

e−
ν(0)

2

×

×
∞∑

λ=2

λ sin (λs)

λ− 1

[

e−ν(θ)

e−ν(0)

]λ
2

, (D.4)

where we used the following abbreviations

z(θ) = tanh2
[

ω
(π

2
− θ
)]

, (D.5)

e−ν(θ) = tanh2
[ω

2

(π

2
− θ
)]

. (D.6)

Note that (D.6) is obtained after some lines of algebra by inserting (D.5) in (D.2). Still the sum
in (D.4) diverges for θ = 0 but it turns out that it can be performed analytically for θ > 0 so that
after the summation the limit θ → 0 exists. For the sake of a lighter notation we introduce the
symbol a by

a ≡
[

e−ν(θ)

e−ν(0)

] 1
2

=
tanh

[
ω
2

(
π
2 − θ

)]

tanh
(

ωπ
4

) . (D.7)

24Since we noticed that the formulae given by Luke, p. 452 eq. (20)–(23) [54] and the formula given by Erdélyi
[53] differ by a factor of 2a+b we performed a numerical check. Its outcome clearly favored Erdélyi’s formula which
we reproduced in D.1.
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It is now straightforward to evaluate the sum over λ:

∞∑

λ=2

λ sin (λs)

λ− 1
aλ =

∞∑

λ=2

sin(λs) aλ +

∞∑

λ=2

sin (λs)

λ− 1
aλ

= −a sin s+

∞∑

λ=1

sin(λs) aλ +

∞∑

λ=1

sin [(λ+ 1) s]

λ
aλ+1

= −a sin s+
1

2

sin s
1
2

(
a+ 1

a

)
− cos s

− a

2
sin s ln

(
1 − 2a cos s+ a2

)

+ a cos s arctan

[
a sin s

1 − a cos s

]

. (D.8)

The full result can therefore be written as

S[s, θ, ω] ∼ − 4

ω

(
1 − z(θ)

1 − z(0)

)2
[
1 + e−ν(θ)

]− 1
2
[
1 − e−ν(θ)

]− 5
2

[
1 + e−ν(0

] 1
2
[
1 − e−ν(0)

]− 3
2

z(0)
3
2

z(θ)2
e−

3ν(θ)
2

e−
ν(0)
2

a sin s× (D.9)

×
{

1

2a

1
1
2

(
a+ 1

a

)
− cos s

− 1

2
ln
(
1 − 2a cos s+ a2

)
+ cot s arctan

[
a sin s

1 − a cos s

]

− 1

}

.

Although the last result is given in closed form, we have to emphasize that its validity is restricted
to distances smaller than the size of the extra dimension R.

It is now save to take the limit θ → 0 in (D.9). The result is

lim
θ→0

S[s, θ, ω] = −sinh
(

ωπ
2

)

ω
sin s

{

1

4

1

sin2( s
2 )

− ln
[

2 sin
(s

2

)]

+
π − s

2
cot s − 1

}

. (D.10)

We note that it is the first term in the curly brackets on the right hand side of (D.9) which is
responsible for reproducing the characteristic short distance singularity of the two-point function.
The main result of this appendix is therefore:

lim
θ→0

S[s, θ, ω] ∼ −sinh
(

ωπ
2

)

ω

{
1

s
+
π

2
+ O (s ln s)

}

. (D.11)

The 5-dimensional short distance singularity can even be obtained including the extra dimension.
Apart from the logarithmic term in the curly brackets of (D.9), all but the first one are finite
at short distances (in θ and s). Developing the denominator of this term, we recover the usual
euclidean metric in R

4:

1

2

(

a+
1

a

)

− cos s ∼ 1

2

[

ω2

sinh2
(

ωπ
2

)θ2 + s2

]

+ . . . . (D.12)

where the dots denote higher terms in θ and s.
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