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1 Introduction

Recently, there has been renewed interest in brane-models in which our world is represented as
a 3 + 1-dimensional submanifold (a 3-brane) living in a higher-dimensional space-time [1, 2].
This idea provides an alternative to Kaluza-Klein compactification [3] and gives new insights
to a construction of low energy effective theory of the fields of the standard model [1, 4] and
gravity [5, 6]. Moreover, it may shed light on gauge hierarchy problem [5, 7] and on cosmological
constant problem [8]-[11].

In string theory Standard Model fields are localized on D-branes - [12], whereas from the
point of view of field theory brane model could be realized as a topological defect formed
by scalar and gauge fields being a solution to the classical equations of motion of the coupled
Einstein – Yang-Mills – scalar field equations. In the latter case one should be able to construct
a solution leading to a regular geometry and localizing fields of different spins, including gravity.

Quite a number of explicit solutions is already known. In five-dimensions a real scalar field
forming a domain wall may serve as a model of 3-brane [13]. Higher dimension topological
defects can be qualitatively different from a five-dimensional case from the point of view of
localization of different fields on a brane. So, strings in six space-time dimensions were con-
sidered in [14]-[19]. In particular, solutions corresponding to a thin local string together with
fine-tuning relations (similar to the Randall-Sundrum domain-wall case) were found in [18] (see
also [20]). A numerical realization confirming the general results of [18] in a singularity-free
geometry and for the case of the Abelian Higgs model has been worked out in [19]. Moving to
even higher dimensions may be of interest because of a richer content of fermionic zero modes
and because of more complicated structure of transverse space. In the framework of KK com-
pactification monopoles in seven dimensions and instantons in eight dimensions were discussed
in [21, 22], and brane-world scenarios in higher dimensions in [16], [23]-[27].

In [23] we considered a general point-like spherically symmetric topological defect as a
model of 3-brane and formulated conditions that are necessary for gravity localization on it.
A transition from a regular solution to the classical equations of motion to a point-like limit
is in fact quite non-trivial for six and higher dimensions (see a detailed discussion for a string
case in [19, 20]). The aim of the present paper is to provide an existence proof of a possibility
of gravity localization on a regular three-dimensional defect – ’t Hooft-Polyakov monopole in
seven dimensions, to study the parameter-space of a model that leads to gravity localization
and to formulate exactly the meaning of point-like monopole limit. We confirm entirely the
previous results, in particular, a possibility of gravity localization on a monopole embedded in
a space with both signs of a bulk cosmological constant.

The paper is organized as follows. In section 2 we present the SO(3) invariant Georgi-
Glashow model (having ’t Hooft-Polyakov monopoles as flat spacetime solutions [28],[29]) cou-
pled to gravity in seven dimensions. The Einstein equations and the field equations are obtained
in the case of a generalized ’t Hooft-Polyakov ansatz for gauge and scalar fields. Boundary con-
ditions are discussed in section 3, the asymptotic behavior of the solutions at the origin in
section 3.1, at infinity in section 3.2. In section 3.3 we give the relations between the brane
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tension components necessary for warped compactification. Section 4 presents numerical results
omitting all technical details. We give explicit sample solutions in section 4.1 and discuss their
general dependence on the parameters of the model. We then present the fine-tuning surface
(the relation between the independent parameters of the model necessary for gravity localiza-
tion) in section 4.2. Sections 5 and 6 treat the Prasad-Sommerfield limit and the point-like
monopole limit, respectively. While in the former case no gravity localizing solutions exist, in
the latter case we demonstrate a possibility of the choice of the model parameters that leads to
a fundamental Planck scale in TeV range and small modifications of the Newton’s law, while
well within the range of applicability of classical gravity. We conclude in section 7. In Ap-
pendix A a derivation of the fine-tuning relations is given, whereas in Appendix B a discussion
of the numerical details can be found.

2 Field equations

The action for the setup considered in this paper is a straightforward generalization of a gravi-
tating ’t Hooft-Polyakov monopole in 4 dimensions (which has been extensively studied in the
past [30]-[34]) to the case of seven-dimensional spacetime:

S = Sgravity + Sbrane. (1)

Here Sgravity is the seven-dimensional Einstein-Hilbert action:

Sgravity =
M5

7

2

∫

d7x
√
−g

(

R − 2Λ7

M5
7

)

, (2)

g is the determinant of the metric gMN with signature (− + + + + + +). We use the sign
conventions for the Riemann tensor of [35]. Upper case latin indices M, N run over 0 . . . 6,
lower case latin indices m, n over 4 . . . 6 and greek indices µ, ν over 0 . . . 3. The parameter M7

denotes the fundamental gravity scale, Λ7 is the bulk cosmological constant and Sbrane is the
action of Georgi and Glashow [36] containing SU(2) gauge field W ã

M and a scalar triplet Φã (we
denote group indices by ã, b̃, c̃ = 1 . . . 3) :

Sbrane =

∫

d7x
√−gLm with Lm = −1

4
Gã

MNGãMN − 1

2
DMΦãDMΦã − λ

4

(

ΦãΦã − η2
)2

,

(3)

where η is the vacuum expectation value of the scalar field and DM is a covariant derivative,

DMΦã = ∂MΦã + e ǫãb̃c̃ W b̃
MΦc̃. (4)

Furthermore one has

Gã
MN = ∂MW ã

N − ∂NW ã
M + e ǫãb̃c̃ W b̃

MW c̃
N . (5)
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The SO(3) symmetry is spontaneously broken down to U(1). The monopole corresponds to
the simplest topologically nontrivial field configuration with unit winding number. The Higgs
mass is given by mH = η

√
2λ. Two of the gauge fields acquire a mass mW = e η.

The general coupled system of Einsteins equations and the equations of motion for the scalar
field and the gauge field following from the above action are

RMN − 1

2
gMNR +

Λ7

M5
7

gMN =
1

M5
7

TMN , (6)

1√−g
DM

(√−gDMΦã
)

= λ Φã
(

Φb̃Φb̃ − η2
)

, (7)

1√−g
DM

(√−g GãMN
)

= −e ǫãb̃c̃
(

DNΦb̃
)

Φc̃ , (8)

where the stress-energy tensor TMN is given by

TMN = − 2√−g

δSbrane

δgMN
= Gã

MLGã L
N + DMΦãDNΦã + gMNLm . (9)

We are interested in static monopole-like solutions to the set of equations (6)-(8) respecting
both, 4D-Poincaré invariance on the brane and rotational invariance in the transverse space.
The fields Φã and W ã

M (and as a result Gã
MN) should not depend on coordinates on the brane

xµ. The brane is supposed to be located at the center of the magnetic monopole. A general
non-factorisable ansatz for the metric satisfying the above conditions is

ds2 = M2(ρ)g(4)
µν dxµdxν + dρ2 + L2(ρ)

(

dθ2 + sin2 θ dϕ2
)

, (10)

where g
(4)
µν is the four-dimensional metric that satisfies the 4D Einstein equations with an

arbitrary cosmological constant Λphys [8]. In this paper we will only consider the case of

Λphys = 0 and we take g
(4)
µν to be the Minkowski metric ηµν with signature (− + ++).

With the use of spherical coordinates for transverse space

~e ρ = (sin θ cos ϕ, sin θ sin ϕ, cos θ) , (11)

~e θ = (cos θ cos ϕ, cos θ sin ϕ,− sin θ) , (12)

~e ϕ = (− sin ϕ, cosϕ, 0) , (13)

the ’t Hooft-Polyakov ansatz is :

~Wρ = 0, ~Wθ = −1 − K(ρ)

e
~e ϕ, ~Wϕ =

1 − K(ρ)

e
sin θ ~e θ, ~Wµ = 0 ~Φ =

H(ρ)

eρ
~e ρ , (14)

with flashes indicating vectors in internal SO(3) space.

3



Using the ansatz (14) for the fields together with the metric (10) in the coupled system of
differential equations (6)-(8) gives

3
M ′′

M
+ 2

L′′

L + 6
M ′ L′

M L + 3
M ′2

M2
+

L′2

L2
− 1

L2
= β (ǫ0 − γ) , (15)

8
M ′ L′

M L + 6
M ′2

M2
+

L′2

L2
− 1

L2
= β (ǫρ − γ) , (16)

4
M ′′

M
+

L′′

L + 4
M ′ L′

M L + 6
M ′2

M2
= β (ǫθ − γ) , (17)

J ′′ + 2

(

2
M ′

M
+

L′

L

)

J ′ − 2
K2J

L2
= αJ

(

J2 − 1
)

, (18)

K ′′ +
K (1 − K2)

L2
+ 4

M ′

M
K ′ = J2K . (19)

where primes denote derivatives with respect to the transverse radial coordinate r, rescaled by
the mass of the gauge boson mW :

r = mW ρ = η e ρ. (20)

All quantities appearing in the above equations are dimensionless, including α, β and γ:

α =
λ

e2
=

1

2

(

mH

mW

)2

, β =
η2

M5
7

, γ =
Λ7

e2η4
, ǫi =

fi

e2η4
, (21)

with

T µ
ν = δµ

ν f0 , T ρ
ρ = fρ , T θ

θ = fθ , T ϕ
ϕ = fϕ , L = LmW , J =

H

η e ρ
. (22)

The dimensionless diagonal elements of the stress-energy tensor are given by

ǫ0 = −
[

K ′2

L2
+

(1 − K2)
2

2L4
+

1

2
J ′2 +

J2K2

L2
+

α

4

(

J2 − 1
)2

]

, (23)

ǫρ =
K ′2

L2
− (1 − K2)

2

2L4
+

1

2
J ′2 − J2K2

L2
− α

4

(

J2 − 1
)2

, (24)

ǫθ =
(1 − K2)

2

2L4
− 1

2
J ′2 − α

4

(

J2 − 1
)2

. (25)

The rotational symmetry in transverse space implies that the (θ θ) and the (ϕϕ) components
of the Einstein equations are identical (and that ǫϕ = ǫθ). Equations (15) - (17) are not
functionally independent [23]. They are related by the Bianchi identities (or equivalently by
conservation of stress-energy ∇MTM

N = 0). Following the lines of [23] we can define various
components of the brane tension per unit length by

µi = −
∞
∫

0

drM(r)4L(r)2ǫi(r) . (26)
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The Ricci scalar and the curvature invariants R, RAB RAB, RABCD RABCD, CABCD CABCD

with CABCD being the Weyl tensor are given by

R

m2
W

=
2

L2
− 2L′2

L2
− 16L′ M ′

LM
− 12 M ′2

M2
− 4L′′

L − 8 M ′′

M
, (27)

RAB RAB

m4
W

=
2

L4
− 4L′2

L4
+

2L′4

L4
− 16L′ M ′

L3 M
+

16L′3 M ′

L3 M
+

48L′2 M ′2

L2 M2
+

48L′ M ′3

LM3
+

36 M ′4

M4
− 4L′′

L3
+

4L′2 L′′

L3
+

16L′ M ′ L′′

L2 M
+

6L′′2

L2
+

16L′ M ′ M ′′

LM2
+

24 M ′2 M ′′

M3
+

16L′′ M ′′

LM
+

20 M ′′2

M2
, (28)

RABCD RABCD

m4
W

=
4

L4
− 8L′2

L4
+

4L′4

L4
+

32L′2 M ′2

L2 M2
+

24 M ′4

M4
+

8L′′2

L2
+

16 M ′′2

M2
, (29)

CABCD CABCD

m4
W

=
8

3L4
− 16L′2

3L4
+

8L′4

3L4
+

128L′ M ′

15L3 M
− 128L′3 M ′

15L3 M
− 16 M ′2

5L2 M2
+

208L′2 M ′2

15L2 M2
− 64L′ M ′3

5LM3
+

24 M ′4

5 M4
+

32L′′

15L3
− 32L′2 L′′

15L3
−

64L′ M ′ L′′

15L2 M
+

32 M ′2 L′′

5LM2
+

64L′′2

15L2
− 32 M ′′

15L2 M
+

32L′2 M ′′

15L2 M
+

64L′ M ′ M ′′

15LM2
− 32 M ′2 M ′′

5 M3
− 128L′′ M ′′

15LM
+

64 M ′′2

15 M2
. (30)

They must be finite continuous functions for regular geometries we are interested in.

3 Boundary conditions and asymptotics of the solutions

The boundary conditions should lead to a regular solution at the origin. Thus we have to
impose

M |r=0 = 1 , M ′|r=0 = 0 , L|r=0 = 0 , L′|r=0 = 1 , (31)

for the components of the metric, where the value +1 for M |r=0 is a convenient choice that can
be obtained by rescaling of the brane coordinates.

What concerns the gauge and the scalar fields, the boundary conditions for them are the
same as for a monopole solution in the flat space-time, [28]:

J(0) = 0 , lim
r→∞

J(r) = 1 , (32)

K(0) = 1 , lim
r→∞

K(r) = 0. (33)
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Finally, a requirement of gravity localization reads

4πM5
7

m3
W

∞
∫

0

M(r)2L(r)2dr = M2
P < ∞ , (34)

what puts a constraint on the behavior of the metric at infinity.

The magnetic charge of the field configuration can either be determined by comparing the
stress-energy tensor with the general expression given in [23] or by a direct calculation of the
magnetic field strength tensor [28]:

GMN =
~Φ · ~GMN

|~Φ|
− 1

e|~Φ|3
~Φ ·
(

DM
~Φ ×DN

~Φ
)

. (35)

The only nonzero component of GMN is Gθϕ = − sin θ
|e|

. Either way gives Q = 1
e
.

3.1 Behavior at the origin

Once boundary conditions at the center of the defect are imposed for the fields and the metric,
the system of equations (15)-(19) can be solved in the vicinity of the origin by developing the
fields and the metric into a power series in the (reduced) transverse radial variable r. For the
given system this can be done up to any desired order. We give the power series up to third
order in r:

M(r) = 1 − 1

60
r2 β

(

α + 4 γ − 6 K ′′(0)
2
)

+ O(r4) , (36)

L(r) = r +
1

360
r3 β

(

α + 4 γ − 30 J ′(0)
2 − 66 K ′′(0)

2
)

+ O(r5) , (37)

J(r) = rJ ′(0) + r3 J ′(0)
−9α + αβ + 4βγ + 6βJ ′(0)2 +18K ′′(0) + 6βK ′′(0)2

90
+ O(r5) , (38)

K(r) = 1 +
1

2
r2 K ′′(0) + O(r4) . (39)

It can easily be shown that the power series of M(r) and K(r) only involve even powers
of r whereas those of L(r) and J(r) involve only odd ones. The expressions for L(r) and J(r)
are therefore valid up to 5th order. One observes that the solutions satisfying the boundary
conditions at the origin can be parametrized by five parameters (α, β, γ, J ′(0), K ′′(0)). For
arbitrary combinations of these parameters the corresponding metric solution will not satisfy
the boundary conditions at infinity. Therefore the task is to find those parameter combinations
for which (34) is finite. For completeness, we give the zero-th order of the power series solutions
for the stress-energy tensor components and the curvature invariants at the origin:

ǫ0|r=0 = −1

4

(

α + 6 J ′(0)2 + 6 K ′′(0)2
)

, (40)

ǫρ|r=0 = ǫθ|r=0 = −1

4

(

α + 2 J ′(0)2 − 2 K ′′(0)2
)

. (41)
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R

m2
W

=
β

10

(

7 α + 28 γ + 30 J ′(0)
2
+ 18 K ′′(0)

2
)

, (42)

RAB RAB

m4
W

=
β2

100

(

7 α2 + 56 αγ + 112 γ2 + 60 αJ ′(0)
2
+ 240 γ J ′(0)

2
+ 300 J ′(0)

4

+12
(

3 α + 12 γ + 70 J ′(0)
2
)

K ′′(0)
2
+ 732 K ′′(0)

4
)

, (43)

RABCD RABCD

m4
W

=
β2

300

(

17 α2 + 136 αγ + 272 γ2 − 60 α J ′(0)
2 − 240 γ J ′(0)

2
+ 900 J ′(0)

4

−36
(

9 α + 36 γ − 110 J ′(0)
2
)

K ′′(0)
2
+ 4932 K ′′(0)

4
)

, (44)

CABCD CABCD

m4
W

=
β2

30

(

α + 4 γ − 6
(

J ′(0)
2
+ 3 K ′′(0)

2
))2

. (45)

3.2 Behavior at infinity

The asymptotics of the metric functions M(r) and L(r) far away from the monopole are [23]:

M(r) = M0 e−
c
2
r and L(r) = L0 = const , (46)

where only positive values of c lead to gravity localization. This induces the following asymp-
totics for the stress-energy components and the various curvature invariants:

lim
r→∞

ǫ0(r) = lim
r→∞

ǫρ(r) = − 1

2L0
4 , (47)

lim
r→∞

ǫθ(r) =
1

2L0
4 . (48)

lim
r→∞

R(r)

m2
W

= −5c2 +
2

L2
0

, (49)

lim
r→∞

RAB(r)RAB(r)

m4
W

= 5c4 +
2

L4
0

, (50)

lim
r→∞

RABCD(r)RABCD(r)

m4
W

=
5

2
c4 +

4

L4
0

, (51)

lim
r→∞

CABCD(r)CABCD(r)

m4
W

=
c4

6
+

8

3L4
0

− 4c2

L2
0

. (52)

The parameters c and L0 are determined by Einsteins equations for large r and are given by
[23]:

c2 =
5

32β

(

1 − 16

5
γβ2 ±

√

1 − 32

25
γβ2

)

, (53)

1

L2
0

=
5

8β

(

1 ±
√

1 − 32

25
γβ2

)

. (54)
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Only the positive signs of the roots lead to solutions with both c2 > 0 and 1
L2

0

> 0 [23].

In order to obtain some information about the asymptotic behavior of the fields J(r) and
K(r) at infinity we insert relations (46) into (18) and (19). Furthermore we use K(r) = δK(r)
and J(r) = 1 − δJ(r) with δK ≪ 1 and δJ ≪ 1 for 1 ≪ r to linearize these equations:

δJ ′′ − 2 c δJ ′ − 2αδJ = 0 , (55)

δK ′′ − 2 c δK ′ +

(

1

L2
0

− 1

)

δK = 0 . (56)

By using the ansatz δK = Ae−kr and δJ = Be−jr we find

k1,2 = −c ±
√

c2 −
(

1

L2
0

− 1

)

, j1,2 = −c ±
√

c2 + 2α . (57)

To satisfy the boundary conditions we obviously have to impose k > 0 and j > 0. We distinguish
two cases:

1. c > 0 Gravity localizing solutions. In this case there is a unique k for 1
L2

0

< 1 with the

positive sign in (57).

2. c < 0 Solutions that do not localize gravity.

(a) 1
L2

0

> 1 i. c2 ≥ 1
L2

0

− 1 Both solutions of (57) are positive.

ii. c2 < 1
L2

0

− 1 In this case there are no real solutions.

(b) 1
L2

0

< 1 There is a unique solution with the positive sign in (57) .

(c) 1
L2

0

= 1 The important k-value here is k = −2c.

It can be easily shown that for large enough r the linear approximation (56) to the equation of
motion of the gauge field is always valid. Linearizing the equation for the scalar field however
breaks down for 2k < j due to the presence of the term ∝ K2J in (18). In that case J(r)
approaches 1 as e−2kr. For solutions with c > 0 (the case of predominant interest) a detailed
discussion of the validity of 2k > j gives:

1. α = 0 Prasad-Sommerfield limit [39]. One has 2k > j. The asymptotics of the scalar
field is governed by e−jr.

2. 0 < α < 2 The validity of 2k > j depends on different inequalities between α, 1
L2

0

and c2.

(a) α + 1
L2

0

≤ 1 −→ 2k > j .
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(b) α + 1
L2

0

> 1 and α
2

+ 1
L2

0

< 1 . In this case 2k ≥ j is equivalent to c2 ≤
−

(

1−α
2
− 1

L2
0

)2

1−α− 1

L2
0

,

where equality in one of the equations implies equality in the other.

(c) α
2

+ 1
L2

0

≥ 1 −→ 2k < j and the scalar field asymptotics is governed by e−2kr.

3. α > 2 −→ 2k < j. Also in this case the gauge field K(r) determines the asymptotics of
the scalar field J(r).

3.3 Fine-tuning relations

It is possible to derive analytic relations between the different components of the brane tensions
valid for gravity localizing solutions. Integrating linear combinations of Einsteins equations
(15)-(17) between 0 and ∞ after multiplication with M4(r)L2(r) gives:

µ0 − µθ =
1

β

∞
∫

0

M4dr =

∞
∫

0

(

1 − K2
)M4

L2
dr , (58)

µ0 − µρ − 2µθ = 2γ

∞
∫

0

M4L2dr , (59)

µ0 + µρ + 2µθ = α

∞
∫

0

(

1 − J2
)

M4L2dr . (60)

To obtain the above relations integration by parts was used where the boundary terms dropped
due to the boundary conditions given above. A detailed derivation of these relations is given
in the appendix A.
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4 Numerical solutions

Details of numerical integrations are given in the Appendix B; in this section we will discuss
the results only.

4.1 Examples of numerical solutions

Fig. 1 and Fig. 4 show two different numerical solutions corresponding to positive and neg-
ative bulk cosmological constant, respectively. Both solutions localize gravity c > 0. The
corresponding parameter values are (α = 1.0000000, β = 5.50000000, γ = −0.05434431) and
(α = 1.0000000, β = 3.50000000, γ = 0.02678351). Figs. 2 and 5 and Figs. 3 and 6 show
the corresponding components of the stress-energy tensor and the curvature invariants. For
high values of β the metric function L(r) develops a maximum before attaining its bound-
ary value. Gravity dominates and the volume of the transverse space stays finite. For lower
values of β the transverse space has infinite volume and gravity can not be localized. See
Figs. 7 and 8 for a solution that does not localize gravity (c < 0) and corresponds to
(α = 1.0000000, β = 1.80000000, γ = 0.04053600).

2 4 6 8 10
r

0.25

0.5

0.75

1

1.25

1.5

1.75

2

M(r)

J(r)

K(r)

L(r)

Figure 1: Gravity-localizing solution with negative bulk cosmological constant corresponding to
the parameter values (α = 1.00000000, β = 5.50000000, γ = −0.05434431)
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2 4 6 8 10
r

-0.5

-0.4

-0.3

-0.2

-0.1

0.1

Ε0HrL

ΕΡHrL

ΕΘHrL

Figure 2: Stress-energy components for the solution given in Fig. 1.
(α = 1.00000000, β = 5.50000000, γ = −0.05434431)

2 4 6 8 10
r

-1

1

2

3

4

5

6

CABCD CABCD
��������������������������

mW 4

RABCD RABCD
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Figure 3: Curvature invariants for the solution given in Fig. 1.
(α = 1.00000000, β = 5.50000000, γ = −0.05434431)
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Figure 4: Gravity-localizing solution with positive bulk cosmological constant corresponding to
the parameter values (α = 1.00000000, β = 3.50000000, γ = 0.02678351)
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Figure 5: Stress-energy components for the solution given in Fig. 4.
(α = 1.00000000, β = 3.50000000, γ = 0.02678351)
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Figure 6: Curvature invariants for the solution given in Fig. 4.
(α = 1.00000000, β = 3.50000000, γ = 0.02678351)
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Figure 7: Example of a solution that does not localize gravity (c < 0) corresponding to the
parameter values (α = 1.00000000, β = 1.80000000, γ = 0.04053600)
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Figure 8: Stress-energy components for the solution given in Fig. 7.
(α = 1.00000000, β = 1.80000000, γ = 0.04053600)

4.2 The fine-tuning surface

Fig. 9 shows the fine-tuning surface in parameter-space. A point on this surface (α0, β0, γ0)
corresponds to a particular solution with the metric asymptotics (46) for both values of the
sign of c. The bold line separates gravity localizing solutions c > 0 from solutions that do
not localize gravity c < 0. The parameter space has been thoroughly exploited within the
rectangles ∆α×∆β = [0, 10] × [0.5, 4.0] and ∆α×∆β = [0, 1] × [3.5, 10] in the (α, β)-plane.
The series of solutions presented in section 4.1 can be used to illustrate their dependence on
the parameter β (strength of gravity) for a for a fixed value of α = 1.

It can be seen from Fig. 9 that for every fixed α there is a particular value of β such that
c equals zero, which is the case for all points on the solid line shown in Fig. 9. By looking at
eq. (53) we immediately see that c = 0 is equivalent to β2γ = Λ7

e2 M10
7

= 1
2
. We will discuss the

limit c ≪ 1 in more detail in section 6. It will turn out to be the most physical case where
the monopole can be considered to be point-like since the fields attain their vacuum values
much earlier than the metric goes to zero outside the core. A solution corresponding to that
case is given in Fig. 17, where gravity (parametrized by β) is just strong enough to provide a
finite volume for transverse space. If for fixed value of α we increase β (starting from c = 0),
c becomes more and more positive, the Planck mass becomes smaller and the monopole size
increases, see Figs. 1 and 4. If on the other hand β is decreased (from c = 0 on), c becomes
more and more negative and the metric M(r) blows up exponentially, as in Fig. 7. Gravity is
no longer strong enough to provide for a finite Planck mass.

For α=0 (the Prasad-Sommerfield limit, to be discussed in section 5) it can be read off from
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Figure 9: Fine-tuning surface for solutions with the metric asymptotics (46). The bold line
separates solutions that localize gravity (c > 0) from those that do not (c < 0). Numerically

obtained values of γ = Λ7

e2η4 are plotted as a function of α = λ
e2 and β = η2

M5
7

.

Fig. 9 that there are no solutions that localize gravity. All α = 0 solutions lie in the c < 0 part
of the surface.

5 Prasad-Sommerfield limit (α = 0)

The Prasad-Sommerfield limit (α = 0) was exploited numerically for β-values ranging from 0.4
to about 70. The corresponding intersection of the fine-tuning surface Fig. 9 and the plane
α = 0 is given in Fig. 10. There exist no gravity localizing solutions as the separating line in
Fig. 9 indicates. The point in Fig. 10 corresponds to the solution shown in Figs. 11 and 12.
One sees that γ tends to zero for β going to infinity and that γ tends to −∞ for β going to
zero.
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Figure 10: Section of the fine-tuning surface Fig. 9 corresponding to the Prasad-Sommerfield
limit α = 0. None of the shown combinations of β and γ-values correspond to solutions that
lead to warped compactification. The point indicates the sample solution given below.
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Figure 11: Sample solution for the Prasad-Sommerfield limit corresponding to the parameter
values (α = 0.00000000, β = 3.60000000, γ = 0.02040333)
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Figure 12: Stress-energy components for the solution given in Fig. 11.
(α = 0.00000000, β = 3.60000000, γ = 0.02040333)

6 A point-like monopole limit - physical requirements

on solutions

The fine monopole can be characterized by c ≪ 1. As anticipated in section 4.2, c = 0 in
eq. (53) immediately leads to β2γ = Λ7

e2 M10
7

= 1
2
. Hence we deduce that the fine-monopole limit

can not be realized for a negative bulk cosmological constant. In addition, from (54) it follows
that L0 =

√
β. The c ≪ 1 limit is qualitatively different from its analogue in the 6D-string case

[19]. The solutions do not correspond to strictly local defects. The Einstein equations never
decouple from the field equations. Due to the particular metric asymptotics (46), the stress-
energy tensor components tend to constants at infinity in transverse space. In the 6D-string
case the fine-string limit was realized as a strictly local defect having stress energy vanishing
exponentially outside the string core. Despite this difference the discussions of the physical
requirements are very similar. In the following we show that in the fine monopole-limit the
dimension-full parameters of the system Λ7, M7, mW , λ, e can be chosen in such a way that all
of the following physical requirements are simultaneously satisfied:

1. M2
P equals (1.22 · 1019GeV)2.

2. The corrections to Newtons law do not contradict latest measurements.

3. Classical gravity is applicable in the bulk.

4. Classical gravity is applicable in the monopole core (r = 0).
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To find solutions with the above mentioned properties it is possible to restrict oneself to a
particular value of α, e.g. α = 1

2
. This choice corresponds to equal vector and Higgs masses

mW = mH . Even though extra dimensions are infinite, the fact that M(r) decreases exponen-
tially permits the definition of an effective “size” r0 of the extra dimensions:

M = M0 e−
c
2
r = M0 e

−
c mW

2

r
mW ⇒ r0 ≡

2

c mW
. (61)

In order to solve the hierarchy problem in similar lines to [5] we parametrize the fundamental
gravity scale as follows:

M7 = κ 103 GeV . (62)

κ = 1 then sets the fundamental scale equal to the electroweak scale.

1. The expression for the square of the Planck mass M2
P can be approximated in the fine-

monopole limit by using the asymptotics (46) for the metric in the integral (34) rather
than the exact (numerical) solutions. This gives

M2
P ≈ 4πM5

7

m3
W

M2
0 L2

0

1

c
. (63)

By using one of Einstein’s equations at infinity

L2
0 =

1

4c2 + 2βγ
, (64)

and by developing to lowest order in c one finds

M2
P ≈ 4πM5

7 M2
0

m3
W

1

2βγ

(

1

c
+ O(c)

)

. (65)

Numerical solutions for c → 0 and α = 1
2

converge to the following approximate parameter
values

β = 3.266281 ,

γ = 0.0468665 ,

β2γ = 0.4999995 ,

M0 = 0.959721 . (66)

The above values were obtained by extrapolation of solutions to c = 0, see Figs. 13 to 16.
Therefore the relative errors are of order 10−6 which is considerably higher than average,
relative errors from the integration which were at least 10−8.

Note that β2γ tends to 1
2

in the fine-monopole limit (see Fig. 15). Neglecting all orders
different from 1

c
in the above expression for M2

P and using (61) one has

mW = 1.1 · 10−5 κ5/2

ξ1/2
GeV , (67)

where r0 has been parametrized by r0 = 0.2 mm

ξ
≈ 1012 GeV−1 · 1

ξ
.
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Figure 13: Behavior of β in the fine-monopole limit c → 0 for α = 1
2
.
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Figure 14: Behavior of γ in the fine-monopole limit c → 0 for α = 1
2
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Figure 15: Behavior of β2γ = Λ7
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in the fine-monopole limit c → 0 for α = 1
2
.
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Figure 16: Behavior of M0 in the fine-monopole limit c → 0 for α = 1
2
.

2. Since Newtons law is established down to 0.2 mm [40] we simply need to have ξ > 1.

3. In order to have classical gravity applicable in the bulk we require that curvature at
infinity is negligible with respect to the corresponding power of the fundamental scale.
By looking at eqs. (49)-(52) we see that we have to impose

c2 m2
W ≪ M2

7 and
m2

W

L2
0

≪ M2
7 . (68)

Using (64) and the first of the above relations, the second one can immediately be trans-
formed into

β γ m2
W ≪ M2

7 . (69)

One then finds

2 · 10−15 ξ

κ
≪ 1 and 4 · 10−3

(

κ3

ξ

)1/2

≪ 1 , (70)

where β and γ have again been replaced by their limiting values (66) for c → 0.

4. Classical gravity is applicable in the monopole core whenever the curvature invariants R2,
RABRAB, RABCDRABCD and CABCDCABCD are small compared to the forth power of the
fundamental gravity scale. Since these quantities are of the order of the mass m4

W (see
(42)) we have

m4
W ≪ M4

7 . (71)

Using (62) and (67) one finds

1.1 · 10−8

(

κ3

ξ

)1/2

≪ 1 . (72)
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Finally, the fine-monopole limit requires

c =
2

r0 mW

≪ 1 . (73)

Again (67) implies

1.8 · 10−7

(

ξ3

κ5

)1/2

≪ 1 . (74)

It is now easy to see that for a wide range of parameter combinations all these requirements on
ξ and κ can simultaneously be satisfied. One possible choice is ξ = 100 and κ = 1. This shows
that already in the case α = 1

2
there are physical solutions corresponding to a fine-monopole

in the sense of eq. (73) respecting all of the above requirements (1)-(4). Fig. 17 shows the
fine-monopole solution corresponding to the lowest c-value in the sequence shown in Figs. 13
to 16.
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Figure 17: Gravity-localizing solution in the fine-monopole limit for c = 1.728 · 10−5 and corre-
sponding parameter values of (α = 0.50000000, β = 3.27000000, γ = 0.04676000)

7 Conclusion

We have demonstrated in this paper that it is possible to generalize the idea of warped com-
pactification on a topological defect in a higher dimensional spacetime to n = 3 transverse
dimensions by considering a specific field theoretical model. Numerical solutions were found
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for the case of a monopole realized as a ’t Hooft-Polyakov monopole. This generalization turned
out to be non-trivial since (at least) in the rotational invariant transverse space setup consid-
ered, Einstein’s equations don’t seem to admit strictly local defect solutions. Even though the
transverse space still approaches a constant curvature space at spatial infinity, it is not neces-
sarily an anti-de-Sitter space. Both signs of the bulk cosmological constant are possible in order
to localize gravity. We considered a fine monopole limit in the case α = 1/2 (mW = mH) and
verified that the model proposed is not in conflict with Newtons law, that it leads to a possible
solution of the hierarchy problem and that classical gravity is applicable in the bulk and in the
core of the defect. Even though stability should be guaranteed by topology, small perturbations
around the monopole background should be considered as well as quadratic corrections to the
Einstein-Hilbert action.

Acknowledgments: We thank T. Gherghetta, H. Meyer, S. Randjbar-Daemi, P. Tinyakov,
S. Wolf and K. Zuleta for helpful discussions. This work was supported by the FNRS grant
20-64859.01.

A Derivation of Fine-tuning relations

By taking linear combinations of Einstein equations (15) to (17) one can easily derive the
following relations:

[M(r)3M ′(r)L(r)2]
′

M(r)4L(r)2
= −β

5
(2γ + ǫ0 − ǫρ − 2ǫθ) , (75)

[M(r)4L(r)L′(r)]
′

M(r)4L2(r)
− 1

L(r)2
= −β

5
(2γ − 4ǫ0 − ǫρ + 3ǫθ) . (76)

By multiplying with M(r)4L(r)2, integrating from 0 to ∞ and using the definition of the brane
tensions (26) we obtain

M(r)3M ′(r)L(r)2|∞0 = −2βγ

5

∫ ∞

0

M(r)4L(r)2dr +
β

5
(µ0 − µρ − 2µθ) , (77)

M(r)4L(r)L′(r)|∞0 =

∫ ∞

0

M(r)4dr − 2βγ

5

∫ ∞

0

M(r)4L(r)2dr − β

5
(4µ0 + µρ − 3µθ) . (78)

Using the boundary conditions for the metric functions (31) and (46), and taking the difference
of the eqs. (77) and (78) then establishes the first part of eq. (58). To prove the second
part of (58) one starts right from the general expressions of the stress-energy components ǫi,
relations (23)-(25):

µ0 − µθ =

∫ ∞

0

drM(r)4L(r)2 (ǫθ − ǫ0) =

∫ ∞

0

drM(r)4L(r)2

{

K ′(r)2

L(r)2
+

[1 − K(r)2]
2

L(r)4
+

J(r)2K(r)2

L(r)2

}

.

(79)
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Multiplying the equation of motion for the gauge field (19) by K(r) and substituting the
J(r)2K(r)2 term gives

µ0 − µθ =

∫ ∞

0

drM(r)4

{

K ′(r)2 +
1 − K(r)2

L(r)2
+

[M(r)4K ′(r)]
′
K(r)

M(r)4

}

. (80)

Integration by parts in the last term of the above equation leads to

µ0 − µθ =

∫ ∞

0

drM(r)4

[

1 − K(r)2

L(r)2

]

+ K(r)M(r)4K ′(r)|∞0 . (81)

which together with the behavior of the gauge field at the origin K ′(0) = 0 (see (39)) finishes
the proof of relation (58).

The proof of relation (59) is simply obtained by rewriting (77) with vanishing left hand side.

To establish (60) we start directly from the definitions of the stress-energy tensor compo-
nents, relations (23)-(25):

µ0 + µρ + 2µθ =

∫ ∞

0

drM(r)4L(r)2

[

J ′(r)2 +
2 J(r)2K(r)2

L(r)2
+ α

(

J(r)2 − 1
)2
]

. (82)

Collecting derivatives in the equation of motion for the scalar field (18) and multiplying by
J(r) gives

2 J(r)2K(r)2

L(r)2
=

[M(r)4L(r)2J ′(r)]
′

M(r)4L(r)2
J(r) − αJ(r)2

(

J(r)2 − 1
)

. (83)

Eliminating now the second term in the equation (82) leads to

µ0 + µρ + 2µθ =

∫ ∞

0

drM(r)4L(r)2

[

J ′(r)2 +
[M(r)4L(r)2J ′(r)]

′

M(r)4L(r)2
J(r) + α

(

1 − J(r)2
)

]

. (84)

If we now expand and integrate the second term by parts we are left with

µ0 + µρ + 2µθ = α

∫ ∞

0

dr
(

1 − J(r)2
)

M(r)4L(r)2 + M(r)4L(r)2J(r)J ′(r)|∞0 , (85)

which reduces to (60) when the boundary conditions for the metric (31) and (46) are used.

B Numerics

As already pointed out, the numerical problem encountered is to find those solutions to the sys-
tem of differential equations (15)-(19) and boundary conditions for which the integral defining
the 4-dimensional Planck-scale (34) is finite. This is a two point boundary value problem on
the interval r = [0,∞) depending on three independent parameters (α, β, γ). Independently of
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the numerical method employed, the system of equations (15)-(19) was rewritten in a different
way in order for the integration to be as stable as possible. By introducing the derivatives of
the unknown functions J(r), K(r), M(r) and L(r) as new dependent variables one obtains a
system of ordinary first order equations. In the case of M(r) it has proven to be convenient to
define y7 = M ′(r)/M(r) as a new unknown function (rather than M ′(r)) since the boundary
condition for y7 at infinity then simply reads

lim
r→∞

y7 = −c

2
. (86)

With the following definitions we give the form of the equations which is at the base of several
numerical methods employed:

y1(r) = J(r) , y′
1 = y5 ,

y2(r) = K(r) , y′
2 = y6 ,

y3(r) = M(r) , y′
3 = y3 y7 ,

y4(r) = L(r) , y′
4 = y8 ,

y5(r) = J ′(r) , y′
5 = −2

(

2 y7 + y8

y4

)

y5 + 2
y1y2

2

y2
4

+ α y1 (y2
1 − 1) ,

y6(r) = K ′(r) , y′
6 = −y2(1−y2

2)
y2
4

− 4y6y7 + y2
1y2 ,

y7(r) = M ′(r)/M(r) , y′
7 = −4y2

7 − 2y7
y8

y4
− β

5
(2γ + ǫ0 − ǫρ − 2ǫθ) ,

y8(r) = L′(r) , y′
8 = −y2

8

y4
− 4y7y8 + 1

y4
− βy4

5
(2γ − 4ǫ0 − ǫρ + 3ǫθ) ,

(87)

with

ǫ0 − ǫρ − 2ǫθ =
α

2

(

y2
1 − 1

)2 − (1 − y2
2)

2

y4
4

− 2
y2

6

y2
4

, (88)

−4ǫ0 − ǫρ + 3ǫθ =
α

2

(

y2
1 − 1

)2
+ 4

(1 − y2
2)

2

y4
4

+ 5
y2

1 y2
2

y2
4

+ 3
y2

6

y2
4

. (89)

This is an autonomous ordinary system of coupled differential equations depending on the
parameters (α, β, γ). The boundary conditions are

y1(0) = 0 ,
lim
r→∞

y1(r) = 1 ,
y2(0) = 1 ,

lim
r→∞

y2(r) = 0 ,
y3(0) = 1 ,
y7(0) = 0 ,

y4(0) = 0 ,
y8(0) = 1 .

(90)

In order to find solutions with the desired metric asymptotics at infinity it is useful to define
either one (or more) of the parameters (α, β, γ) or the constants J ′(0) and K ′′(0) as additional
dependent variables, e.g. y9(r) = α with y′

9(r) = 0, see [41]. Before discussing the different
methods that were used we give some common numerical problems encountered.

• Technically it is impossible to integrate to infinity. The possibility of compactifying
the independent variable r was not believed to simplify the numerics. Therefore the
integration has to be stopped at some upper value of r = rmax. For most of the solutions
this was about 20 ∼ 30.
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• Forward integration with arbitrary but fixed values of (α, β, γ, J ′(0) , K ′′(0)) turned out
to be very unstable. This means that even before some integration routine (e.g. the
Runge-Kutta method [41]) reached rmax, the values of some yi went out of range which
was due to the presence of terms 1

(L)n or quadratic and cubic (positive coefficient) terms
in yi.

• Some right hand sides of (87) contain terms singular at the origin such that their sums
remain regular. Starting the integration at r = 0 is therefore impossible. To overcome this
problem the solution in terms of the power series (36)-(39) was used within the interval
[0, ǫ] (for ǫ = 0.01).

• The solutions are extremely sensitive to initial conditions which made it unavoidable
to pass from single precision to double precision (from about 7 to about 15 significant
digits). However this didn’t completely solve the problem. Even giving initial conditions
(corresponding to a gravity localizing solution) at the origin to machine precision is in
general not sufficient to obtain satisfactory precision at rmax in a single Runge-Kutta
forward integration step from ǫ to rmax.

The method used for exploiting the parameter space (α, β, γ) for gravity localizing solutions
was a generalized version of the shooting method called the multiple shooting method [41], [42],
[43], [44]. In the shooting method a boundary value problem is solved by combining a root-
finding method (e.g. Newton’s method [41]) with forward integration. In order to start the
integration at one boundary, the root finding routine specifies particular values for the so-called
shooting parameters and compares the results of the integration with the boundary conditions
at the other boundary. This method obviously fails whenever the “initial guess” for the shooting
parameters is too far from a solution such that the forward integration does not reach the second
boundary. For this reason the multiple shooting method was used in which the interval [ǫ , rmax]
was divided into an variable number of sub-intervals in each of which the shooting method was
applied. This of course drastically increased the number of shooting parameters and as a result
the amount of computing time. However, it resolved two problems:

• Since the shooting parameters were specified in all sub-intervals the precision of the
parameter values at the origin was no longer crucial for obtaining high precision solutions.

• Out of range errors can be avoided by augmenting the number of shooting intervals (at
the cost of increasing computing time).

Despite all these advantages of multiple shooting, a first combination of parameter values
(α, β, γ, J ′(0) , K ′′(0)) leading to gravity localization could not be found by this method, since
convergence depends strongly on how close initial shooting parameters are to a real solution.
This first solution was found by backward integration combined with the simplex method
for finding zeros of one real function of several real variables. For a discussion of the simplex
method see e.g. [41]. This solution, corresponds to the parameter values (α = 1.429965428, β =
3.276535576, γ = 0.025269415).

25



Once this solution was known, it was straightforward to investigate with the multiple shoot-
ing method which subset of the (α, β, γ)-space leads to the desired metric asymptotics. We
used a known solution (α1, β1, γ1) to obtain starting values for the shooting parameters of a
closeby other solution (α1 + δα, β1 + δβ, γ1 + δγ). This lead in general to rapid convergence
of the Newton-method. Nevertheless, δα, δβ, δγ still had to be small. By this simple but
time-consuming operation the fine-tuning surface in parameter-space, presented in section 4.2
and shown in Fig. 9 was found.
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