2,532 research outputs found
Flow with PMD: Past and Future
Measurements of azimuthal distribution of inclusive photons using the fine
granularity preshower photon multiplicity detector (PMD) at CERN SPS are used
to obtain anisotropy in the azimuthal distributions. These results are used to
estimate the anisotropy in the neutral pion distributions. The results are
compared with results of charged particle data, both for first order and second
order anisotropy. Assuming the same anisotropy for charged and neutral pions,
the anisotropy in photons is estimated and compared with the measured
anisotropy. The effect of neutral pion decay on the correlation between the
first order and the second order event plane is also discussed. Data from PMD
can also be used to estimate the reaction plane for studying any anisotropy in
particle emission characteristics in the ALICE experiment at the Large Hadron
Collider. In particular, we show that using the event plane from the PMD, it
will be possible to measure the anisotropy in Jpsi absorption (if any) in the
ALICE experiment.Comment: Invited talk in the Fourth International Conference on the Physics
and Astrophysics of Quark Gluon Plasma, 26-30 Nov.2001, Jaipur, Indi
Heuristic algorithms for the min-max edge 2-coloring problem
In multi-channel Wireless Mesh Networks (WMN), each node is able to use
multiple non-overlapping frequency channels. Raniwala et al. (MC2R 2004,
INFOCOM 2005) propose and study several such architectures in which a computer
can have multiple network interface cards. These architectures are modeled as a
graph problem named \emph{maximum edge -coloring} and studied in several
papers by Feng et. al (TAMC 2007), Adamaszek and Popa (ISAAC 2010, JDA 2016).
Later on Larjomaa and Popa (IWOCA 2014, JGAA 2015) define and study an
alternative variant, named the \emph{min-max edge -coloring}.
The above mentioned graph problems, namely the maximum edge -coloring and
the min-max edge -coloring are studied mainly from the theoretical
perspective. In this paper, we study the min-max edge 2-coloring problem from a
practical perspective. More precisely, we introduce, implement and test four
heuristic approximation algorithms for the min-max edge -coloring problem.
These algorithms are based on a \emph{Breadth First Search} (BFS)-based
heuristic and on \emph{local search} methods like basic \emph{hill climbing},
\emph{simulated annealing} and \emph{tabu search} techniques, respectively.
Although several algorithms for particular graph classes were proposed by
Larjomaa and Popa (e.g., trees, planar graphs, cliques, bi-cliques,
hypergraphs), we design the first algorithms for general graphs.
We study and compare the running data for all algorithms on Unit Disk Graphs,
as well as some graphs from the DIMACS vertex coloring benchmark dataset.Comment: This is a post-peer-review, pre-copyedit version of an article
published in International Computing and Combinatorics Conference
(COCOON'18). The final authenticated version is available online at:
http://www.doi.org/10.1007/978-3-319-94776-1_5
A Honeycomb Proportional Counter for Photon Multiplicity Measurement in the ALICE Experiment
A honeycomb detector consisting of a matrix of 96 closely packed hexagonal
cells, each working as a proportional counter with a wire readout, was
fabricated and tested at the CERN PS. The cell depth and the radial dimensions
of the cell were small, in the range of 5-10 mm. The appropriate cell design
was arrived at using GARFIELD simulations. Two geometries are described
illustrating the effect of field shaping. The charged particle detection
efficiency and the preshower characteristics have been studied using pion and
electron beams. Average charged particle detection efficiency was found to be
98%, which is almost uniform within the cell volume and also within the array.
The preshower data show that the transverse size of the shower is in close
agreement with the results of simulations for a range of energies and converter
thicknesses.Comment: To be published in NIM
The STAR Photon Multiplicity Detector
Details concerning the design, fabrication and performance of STAR Photon
Multiplicity Detector (PMD) are presented. The PMD will cover the forward
region, within the pseudorapidity range 2.3--3.5, behind the forward time
projection chamber. It will measure the spatial distribution of photons in
order to study collective flow, fluctuation and chiral symmetry restoration.Comment: 15 pages, including 11 figures; to appear in a special NIM volume
dedicated to the accelerator and detectors at RHI
Multi-Channel Distributed Coordinated Function over Single Radio in Wireless Sensor Networks
Multi-channel assignments are becoming the solution of choice to improve performance in single radio for wireless networks. Multi-channel allows wireless networks to assign different channels to different nodes in real-time transmission. In this paper, we propose a new approach, Multi-channel Distributed Coordinated Function (MC-DCF) which takes advantage of multi-channel assignment. The backoff algorithm of the IEEE 802.11 distributed coordination function (DCF) was modified to invoke channel switching, based on threshold criteria in order to improve the overall throughput for wireless sensor networks (WSNs) over 802.11 networks. We presented simulation experiments in order to investigate the characteristics of multi-channel communication in wireless sensor networks using an NS2 platform. Nodes only use a single radio and perform channel switching only after specified threshold is reached. Single radio can only work on one channel at any given time. All nodes initiate constant bit rate streams towards the receiving nodes. In this work, we studied the impact of non-overlapping channels in the 2.4 frequency band on: constant bit rate (CBR) streams, node density, source nodes sending data directly to sink and signal strength by varying distances between the sensor nodes and operating frequencies of the radios with different data rates. We showed that multi-channel enhancement using our proposed algorithm provides significant improvement in terms of throughput, packet delivery ratio and delay. This technique can be considered for WSNs future use in 802.11 networks especially when the IEEE 802.11n becomes popular thereby may prevent the 802.15.4 network from operating effectively in the 2.4 GHz frequency band
Flow analysis from multiparticle azimuthal correlations
We present a new method for analyzing directed and elliptic flow in heavy ion
collisions. Unlike standard methods, it separates the contribution of flow to
azimuthal correlations from contributions due to other effects. The separation
relies on a cumulant expansion of multiparticle azimuthal correlations, and
includes corrections for detector inefficiencies. This new method allows the
measurement of the flow of identified particles in narrow phase-space regions,
and can be used in every regime, from intermediate to ultrarelativistic
energies.Comment: 31 pages, revtex. Published version (references added
Interferometry of Direct Photons in Central 280Pb+208Pb Collisions at 158A GeV
Two-particle correlations of direct photons were measured in central
208Pb+208Pb collisions at 158 AGeV. The invariant interferometric radii were
extracted for 100<K_T<300 MeV/c and compared to radii extracted from charged
pion correlations. The yield of soft direct photons, K_T<300 MeV/c, was
extracted from the correlation strength and compared to theoretical
calculations.Comment: 5 pages, 4 figure
Azimuthal Anisotropy of Photon and Charged Particle Emission in Pb+Pb Collisions at 158 A GeV/c
The azimuthal distributions of photons and charged particles with respect to
the event plane are investigated as a function of centrality in Pb + Pb
collisions at 158 A GeV/c in the WA98 experiment at the CERN SPS. The
anisotropy of the azimuthal distributions is characterized using a Fourier
analysis. For both the photon and charged particle distributions the first two
Fourier coefficients are observed to decrease with increasing centrality. The
observed anisotropies of the photon distributions compare well with the
expectations from the charged particle measurements for all centralities.Comment: 8 pages and 6 figures. The manuscript has undergone a major revision.
The unwanted correlations were enhanced in the random subdivision method used
in the earlier version. The present version uses the more established method
of division into subevents separated in rapidity to minimise short range
correlations. The observed results for charged particles are in agreement
with results from the other experiments. The observed anisotropy in photons
is explained using flow results of pions and the correlations arising due to
the decay of the neutral pion
Particle density fluctuations
Event-by-event fluctuations in the multiplicities of charged particles and
photons at SPS energies are discussed. Fluctuations are studied by controlling
the centrality of the reaction and rapidity acceptance of the detectors.
Results are also presented on the event-by-event study of correlations between
the multiplicity of charged particles and photons to search for DCC-like
signals.Comment: Talk presented at Quark Matter 2002, Nantes, Franc
Systematics of Inclusive Photon Production in 158 AGeV Pb Induced Reactions on Ni, Nb, and Pb Targets
The multiplicity of inclusive photons has been measured on an event-by-event
basis for 158 AGeV Pb induced reactions on Ni, Nb, and Pb targets. The
systematics of the pseudorapidity densities at midrapidity (rho_max) and the
width of the pseudorapidity distributions have been studied for varying
centralities for these collisions. A power law fit to the photon yield as a
function of the number of participating nucleons gives a value of 1.13+-0.03
for the exponent. The mean transverse momentum, , of photons determined
from the ratio of the measured electromagnetic transverse energy and photon
multiplicity, remains almost constant with increasing rho_max. Results are
compared with model predictions.Comment: 16 pages including 4 figure
- …